Math 6843 homework

15. (3/4) Let L and M be the standard longitude and meridian curves on the torus T. Check that with respect to the basis $\{L, M\},\left(t_{L}\right)_{\#}=\left[\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right]$ and $\left(t_{M}\right)_{\#}=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$. Notice that $t_{L}^{-1} t_{M}$ is (isotopic to) the Anosov diffeomorphism studied in the previous problem.
16. (4/1) Let S be a hyperbolic surface. For simplicity, we will assume that S is closed, although it need only be of finite type.
(a) Find a collection \mathcal{C} of curves in S with the following properties: Any two intersect in 0 or 1 point, and the closure of each complementary region is a disk. The curves in the collection may be assumed to be geodesics (don't worry about the details of that).
(b) Let j be an isometry of S (i. e. an isometry from S to S) that preserves each C in \mathcal{C}, and preserves the direction on each C. Show that j is the identity on each C.
(c) Show that if j is an isometry as in (b) and is orientation-preserving, then j preserves each complementary region, and deduce that j is the identity.
(d) Let j be an isometry of S. Prove that if j is isotopic to the identity map of S, then j equals the identity map.
(e) Let j and k be isometries of S. Prove that if j is isotopic to k, then $j=k$.
(f) Prove that the group $\operatorname{Isom}(S)$ of isometries of S is finite. [It suffices to show that the group $\mathrm{Isom}_{+}(S)$ of orientation-preserving isometries is finite. Let M be the maximum length of a curve in \mathcal{C}. Let S be the finite set of oriented geodesic curves in S of length $\leq M$ (so each geodesic curve appears twice in S, once with each orientation). Observe there is a homomorphism from $\operatorname{Isom}_{+}(S)$ into the permutation group on S. Show that the kernel is trivial.]
17. (4/8) Download and print out the document mosher.pdf, which has a link on our course web page. Spend some time reading it.
