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in P[0,∞)C is a closed ball of dimension 6g−6+2p whose interior is P ◦L(T ). The
boundary points of this ball are usually described in one of two ways: using mea-
sured geodesic laminations, or using measured foliations. We shall adopt the latter
method, which is better designed for working with Teichmüller geodesics. How-
ever, we shall extend the class of measured foliations to include “partial measured
foliations”, which have some of the flexibility of geodesic laminations.

2.3 The mapping class group

Let Homeo(S) be the group of homeomorphisms of S, and let Homeo0(S) be the
normal subgroup of homeomorphisms isotopic to the identity on S. The mapping

class group is MCG = MCG(S) = Homeo(S)/ Homeo0(S). There is a natural
action of MCG on the Teichmüller space T . Indeed, as we define other natural
topological and geometric structures on surfaces on which Homeo(S) acts, the action
of Homeo0(S) induces an equivalence relation on such structures which coincides
with isotopy, and MCG acts naturally on the set of isotopy classes. Examples
include the actions of MCG on the isotopy classes of measured foliations MF , and
on the isotopy classes of quadratic differentials QD.

The action of MCG on T is properly discontinuous, and the quotient space is
naturally a smooth orbifold called the moduli space of S, denoted M = M(S) =
T /MCG.

2.4 Quadratic differentials and their horizontal and vertical folia-

tions

The singularities of measured foliations are locally modelled on singularities of hori-
zontal foliations of quadratic differentials. We shall therefore pause for a brief foray
into quadratic differentials, which will be covered in more detail later.

If we give S a conformal structure, a meromorphic quadratic differential q on
S is an expression q = f(z) dz2 for each local coordinate z, such that f(z) is
meromorphic, and such that for any overlap map z′ 7→ z between local coor-
dinates, if q = f(z) dz2 in the z coordinate, then in the z′ coordinate we have

q = f(z(z′))
(

dz
dz′

)2
dz′2. Zeroes and poles of q are well-defined, as is the order of a

zero or pole. q determines an area form, expressed in a coordinate z as |f(z)| |dz|2,
and the total area is denoted ‖q‖. Note that q is integrable, meaning that ‖q‖ is
finite, if and only if q has a meromorphic extension to the filled in surface S̄ so
that each pole has degree 1. In studying the Teichmüller space of a Riemann sur-
face S of finite type, the most relevant quadratic differentials on S are those which
are holomorphic and integrable. For the rest of the paper, therefore, a quadratic

differential on S is assumed to have these properties.
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Consider a quadratic differential q. Near any regular point p there is a local
coordinate z so that q = dz2; the germ of this coordinate is unique up to trans-
formations of the form z 7→ ±z + c. Near any singular point p there is a local
coordinate z, taking p to the origin of the z-plane, in which q = zn dz2, such that
either n = −1 and p is a pole of q, or n ≥ 1 and p is a zero of order n; the coordinate
z is unique up to multiplication by an (n+2)nd root of unity (completely unique in
the case n = −1). In any of these cases we refer to z as a canonical coordinate for
q near p.

A quadratic differential q determines two singular transversely measured folia-
tions, called the horizontal and vertical foliations, denoted Fh(q) and Fv(q). These
foliations have the same singular set, namely the set of zeroes and poles of q. Near
a nonsingular point p with canonical coordinate z = x + iy, horizontal leaf seg-
ments are parallel to the x-axis and the transverse measure on Fh(q) is defined
by integration of |dy|, while vertical leaf segments are parallel to the y-axis with
transverse measure defined by integrating |dx|. These measured foliations are well-
defined, because the canonical coordinate near a regular point is well defined up to
transformations of the form z 7→ ±z + c.

To visualize the measured foliations Fh(q) and Fv(q) near a singular point p
with canonical coordinate z, we have q = zk−2 dz2 for some k ≥ 1; either k ≥ 3 and
p is a zero of order k − 2, or k = 1 and p is a pole of order 1. Near any z 6= 0 an
easy calculation shows that z′ = zk/2 is a canonical coordinate for zk−1 dz2, using
either choice of the square root in the case where k is odd. Horizontal and vertical
leaves of zk−2 dz2 can therefore be described as follows. For each i ∈ Z/kZ let Si be
the angular sector of C defined in polar coordinates by 2πi/n ≤ θ ≤ 2π(i + 1)/n.
Let z′ = x′ + iy′ vary over the closed upper half plane of C, and let z′2/k denote
the 2/kth root of z′ taking values in the angular sector S0. For each i ∈ Z/kZ, the

map z′
φi

−→ z = exp(2πi/k)z′2/k takes values in the sector Si, the horizontal leaves
of zk−2 dz2 in Si are the images under the map φi of lines parallel to the x′-axis in
the closed upper half z′ plane, and the transverse measure is obtained by pushing
forward |dy′|; a similar discussion holds for vertical leaves. The ray Ri = Si−1 ∩ Si,
whose angle is θ = 2πi/n, is a leaf of the horizontal foliation called a separatrix

attached to the origin. The set of separatrices, indexed by Z/kZ, has a natural
circular ordering. By convention, a regular point of a foliation will sometimes be
called a 2-pronged singularity, especially when that point is a puncture on a surface
of finite type.

2.5 Measured foliations

The general concept of a measured foliation on a surface of finite type is obtained by
using the horizontal measured foliation of a quadratic differential as a local model.
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Figure 3: A k-pronged singularity (k = 3), modelled on the horizontal foliation of
zk−2 dz2 near the origin of C. Leaf segments are pre-images, under a transformation
z′ = zk/2 (with any choice of the root), of horizontal segments in the z′ plane. Each
ray passing through a kth root of unity is a leaf, called a separatrix. The region
between two separatrices is foliated like the horizontal foliation of the upper half-
plane.

For surfaces with boundary, we need two other local models to define measured
foliations tangent to the boundary: a regular tangential boundary point is locally
modelled on the horizontal foliation of the closed upper half plane of C, near the
origin; and a k-pronged tangential boundary singularity with k ≥ 3 is locally mod-
elled on the horizontal foliation of z2k−2 dz2 near the origin in the closed upper half
plane of C, with 2 separatrices on the boundary and k−2 separatrices pointing into
the interior.

Consider now a finite type surface-with-boundary F = F̄ − P (F ), meaning
that F̄ is a compact, oriented surface-with-boundary and P (F ) is a finite subset
of int(F ). A measured foliation on F is a foliation F on F̄ with finitely many
prong singularities sing(F) and with a positive transverse Borel measure, such that
each singularity of F in int(F̄ ) − P is a k-pronged singularity for some k ≥ 3,
each puncture is a k-pronged singularity for some k ≥ 1, and each point of ∂F
is either a regular tangential boundary point or a k-pronged tangential boundary
singularity for some k ≥ 3. By convention every puncture of F̄ is considered to be
a singularity, even if it is a 2-pronged singularity, so P ⊂ sing(F). The restriction
F

∣

∣ F − sing(F) is a true foliation; it is locally modelled on the horizontal foliation
of R

2 with overlap maps of the form (x, y) 7→ (f(x, y),±y+c), and so the transverse
measure is defined in local models as integration of |dy|. The interested reader can
work out the form of overlap maps between regular and singular models for F , and
between two singular models.

Given a leaf ℓ of F
∣

∣ F̄ − sing(F), let ℓ be obtained from ℓ by adding any

singularity of F which is the limit point of some end of ℓ; we define ℓ to be a
nonsingular leaf of F . There are several types of nonsingular leaves: a bi-infinite

leaf is homeomorphic to R; a closed leaf is a circle containing no singularities; an
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infinite separatrix is homeomorphic to [0,∞) with one endpoint at a singularity;
and a saddle connection is a compact leaf containing a singularity, either an arc
with endpoints at distinct singularities, or a circle containing one singularity. A
nonsingular leaf segment is a compact segment contained in a nonsingular leaf.

We still have not defined what we mean by a leaf of F , unadorned with any
qualifiers. Consider a compact segment α which is a union of nonsingular leaf
segments. Given a transverse orientation V on α, we say that α is perturbable in the
direction of V if there exists an embedding f : α× [0, 1] → F̄ such that f(α×0) = α,
the oriented segment f(x×[0, 1]) represents the transverse orientation V at the point
f(x) ∈ α, and for each t ∈ (0, 1] the set f(α×t) is a nonsingular leaf segment. We say
that α is a leaf segment if it has a perturbable transverse orientation. For example,
if α is a nonsingular leaf segment then both transverse orientations are perturbable
and in particular α is a leaf segment. More generally, perturbability means that at
a singularity s ∈ int(α), α contains two separatrices incident to the same sector at
s, and V points into that sector. Finally, a leaf ℓ of F is the embedded image of
either R or S1, whose image is a union of nonsingular leaves, such that for some
transverse orientation V on ℓ, the restriction of V to every compact subsegment of
ℓ is perturbable. Notice that if ℓ ≈ R then ℓ is never globally perturbable in either
direction; this uses the existence of a positive transverse measure on F .

A finite separatrix of F is a nonsingular leaf segment ℓ with one end at a singu-
larity s ∈ sing(F). More precisely we say that ℓ is a separatrix located at s. If s is an
n-pronged singularity then there are n distinct separatrix germs at s. Each infinite
separatrix represents a unique separatrix germ, each saddle connection represents
exactly two separatrix germs, and every separatrix germ is uniquely represented
either by an infinite separatrix or by a saddle connection.

A leaf cycle of F is a union of saddle connections which forms either an embedded
circle in F̄ , or an embedded arc in F̄ not lying in ∂F each of whose endpoints is
either a puncture or a boundary singularity. Note that if F has a closed leaf then
F has a leaf cycle; the converse is not true, because a leaf cycle need not have a
perturbable transverse orientation.

Suppose that F is a measured foliation on F and α is a saddle connection which
is not a leaf cycle (so α is an embedded arc, and either α ⊂ ∂F or at least one
endpoint is neither a puncture nor a boundary singularity). Collapsing α to a
point induces a new measured foliation on F which we say is obtained from F by a
Whitehead collapse. The equivalence relation on the set of measured foliations on
F generated by Whitehead collapse and isotopy is called Whitehead equivalence.

The term “measured foliation” without any other qualifiers will always imply,
as defined above, that each boundary point is a regular tangential boundary point
or a tangential boundary singularity. We shall have a limited need for boundary

transverse measured foliations of F as well. These have the same local models in
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F − ∂F , but on the boundary the local models for regular and k-pronged trans-

verse boundary points are the vertical foliations of dz2 and z2k−2 dz2, respectively,
restricted to the closed upper half plane, near the origin. The only place where we
make significant use of boundary transverse foliations is in the tie bundle over a
train track, in Section 3.

The definition of a leaf of F that we have adopted in this section behaves well
under Whitehead equivalence. That is, if F ,F ′ are Whitehead equivalent measured
foliations then there is a natural bijection between leaves of F and leaves of F ′.
This is obvious when F ,F ′ are isotopic. It is not hard to check for a Whitehead
collapse from F to F ′: it follows immediately from the observation that if α is a
segment consisting of a union of leaf segments of F , and if α′ is the image of α, then
α′ is a union of leaf segments of F ′, and α has a perturbable transverse orientation
if and only if α′ does.

Also, the definition of a leaf of F is consistent with the concept of a leaf of
an equivalent measured geodesic lamination λ, in the following sense. Recall that
equivalence means that there exists a map π : (S, λ) → (S,F) that collapses com-
ponents of S − λ to leaf cycles of F , takes leaf segments of λ to leaf cycles of F ,
and pushes the transverse measure on λ forward to the transverse measure on F .
Under these circumstances, π take a leaf segment of λ to segment which is a union
of leaf segments of F and which has a perturbable transverse orientation, and hence
π takes leaves of λ bijectively to leaves of F .

Arational measured foliations. A measured foliation F on F is arational if ev-
ery leaf cycle is a component of ∂F . Equivalently, for every essential, nonperipheral
simple closed curve c, the intersection number of F with c is nonzero. Arationality
is invariant under Whitehead equivalence.

In the case where F has no punctures and no boundary, arationality of F means
that there are no leaf cycles at all; equivalently, the union of saddle connections of
F is a disjoint union of trees. When F has punctures, arationality of F means that
the union of saddle connections is a disjoint union of trees, and each of these trees
contains at most one puncture. When F has punctures and boundary, arationality
of F means that for each component C of the union of saddle connections, either
C is a tree containing at most one puncture, or C contains a component of ∂F as
a deformation retract and C contains no puncture at all.

A property related to arationality is minimality, which means that each leaf of
F is dense. Each arational measured foliation F is minimal: if there is a nondense
leaf ℓ then its closure is a proper 2-complex in S, whose frontier is a union of leaf
segments of F . On a torus with ≤ 1 puncture the converse is true: the arational
measured foliations are the same as the minimal measured foliations, and they are


