I. (a) Suppose that $A_{1}, A_{2}, \ldots, A_{k}$ are nonsingular $n \times n$ matrices. Explain why the product $A_{1} A_{2} \cdots A_{k}$ is (9) nonsingular.
(b) Give an example of nonzero 2×2 matrices A, B, and C for which $A B=A C$ but $B \neq C$.
(c) Show that if A, B, and C are 2×2 matrices with $A B=A C$, and A is nonsingular, then $B=C$.
II. As you know, a matrix transformation from \mathbb{R}^{n} to \mathbb{R}^{m} is a function of the form $F(X)=A X$, where A
(3) is an $m \times n$ matrix and a point X in \mathbb{R}^{n} is regarded as an $n \times 1$ column vector. Verify (using properties of matrix addition, matrix multiplication, and scalar multiplication) that any matrix function F must be linear.
III. Let $L: V \rightarrow W$ be a linear transformation.
(7)
(a) Define the kernel of L. Verify that it is a subspace of V.
(b) Define the range of L (it is a subspace of W, but you do not need to verify this).
IV. Let V be a vector space and let $S=\left\{v_{1}, \ldots, v_{k}\right\}$ be a subset of V. Verify that $\operatorname{span}(S)$ is a subspace of V.
V. A certain matrix A has 15 rows and 20 columns.
(6)
(a) What rank must A have in order that its null space have dimension 8 ? Explain why.
(b) What nullity must A have in order that the nonhomogeneous system $A X=B$ have at least one solution for every choice of B ? Explain why.
VI. A certain matrix transformation from \mathbb{R}^{3} to \mathbb{R}^{3} is given by multiplication by a 3×3 matrix A, of nullity
(5) 1. Draw our standard picture of two 3-dimensional spaces, representing the domain and codomain of the matrix transformation, showing a possible null space, row space, and column space for A (label which is which, in your picture).
VII. Let A be the 4×4 matrix $\left[\begin{array}{cccc}t & 0 & 0 & 1 \\ 0 & 0 & t & 0 \\ 0 & t & 0 & 0 \\ 1 & 0 & 0 & t\end{array}\right]$, which depends on the value of the variable t. Use the cofactor expansion method, expanding across the second row, to calculate the determinant of A.
VIII. Let $A=\left[\begin{array}{lll}1 & 0 & t \\ 0 & 1 & 0 \\ t & 0 & 1\end{array}\right]$, for which $\operatorname{det}(A)=1-t^{2}$. Assuming that $t \neq 1$ and $t \neq-1$, so that A is nonsingular,
use the row operation method to compute A^{-1}. (Hint: Start with the elementary row operation $R_{3}-t R_{1} \rightarrow$ R_{3}.)
IX. Let u and v be vectors in an inner product space V.
${ }^{(5)}$ (a) Use properties of the inner product to determine how $\|u+v\|^{2}$ is related to $\|u\|^{2}+\|v\|^{2}$. (Hint: $\|u+v\|^{2}=$ $(u+v, u+v)$.)
(b) Deduce that if u and v are orthogonal for the inner product, then $\|u+v\|^{2}=\|u\|^{2}+\|v\|^{2}$.
X. Let $S=\left\{v_{1}, \ldots, v_{n}\right\}$ be a set of vectors in a vector space V.
(6)
(a) Define what it means to say that S is linearly independent.
(b) Show that if S is linearly independent, and

$$
a_{1} v_{1}+a_{2} v_{2}+\cdots+a_{n} v_{n}=b_{1} v_{1}+b_{2} v_{2}+\cdots+b_{n} v_{n}
$$

then $a_{i}=b_{i}$ for all i. (Hint: subtract $b_{1} v_{1}+b_{2} v_{2}+\cdots+b_{n} v_{n}$ from both sides of the equation.)
XI. Find the characteristic polynomial of the matrix
$(4)$$\left[\begin{array}{lll}1 & 2 & 1 \\ 0 & 1 & 2 \\ 0 & 3 & 2\end{array}\right]$.
XII. The eigenvalues of the matrix $A=\left[\begin{array}{ccc}-2 & -2 & 3 \\ 0 & 3 & -2 \\ 0 & -1 & 2\end{array}\right]$ are $-2,1$, and 4 . Find an eigenvector associated to
-2 , and an eigenvector associated to 1 .
XIII. Find a basis for the eigenspace associated with $\lambda=3$ for the matrix $A=\left[\begin{array}{ccc}3 & 0 & 0 \\ -2 & 3 & -2 \\ 2 & 0 & 5\end{array}\right]$.
 $\left[\begin{array}{c}1 \\ -6 \\ 4\end{array}\right]$, and $\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$ (you do not need to calculate these or check them).
(a) Write down a diagonal matrix D that is similar to A.
(b) Write down a matrix P so that $P^{-1} A P=D$.

