Mathematics 3333-001

Examination II

March 24, 2009 Instructions: Give concise answers, but clearly indicate your reasoning.

Use the row operation method to calculate the inverse of the matrix $\begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \end{vmatrix}$. Ι. (6)

		1	0	0		-1	0	0	
II . (7)	Let $A =$	2	0	0	and $B =$	0	1	0	
		0	1	0		0	0	0	

- (a) Show that A and B are row equivalent. Give a list of elementary matrices E_1, \ldots, E_k for which $E_k \cdots E_1 A =$ B.
- (b) Explain why A and B cannot be column equivalent.
- III.
- Let V be a vector space and let $S = \{v_1, \ldots, v_k\}$ be a subset of V. Recall that $\operatorname{span}(S)$ is the set of all linear combinations of element of S, that is, $\{\sum_{i=1}^k \lambda_i v_i \mid \lambda_i \in \mathbb{R}\}$. Verify that $\operatorname{span}(S)$ is a subspace of V. (4)
- IV. Let $W = \{at^2 + bt + c \mid c \ge 0\}$, that is, the set of all polynomials of degree at most 2 and having non-negative constant term. By giving a specific counterexample, show that W is not a subspace of P_2 (the vector space (3)of all polynomials of degree at most 2).
- V. Let A be an $m \times n$ matrix and consider the homogeneous system of linear equations given by AX = 0. Its
- (4)solutions form a subset of \mathbb{R}^n . Verify that the set of solutions is a subspace of \mathbb{R}^n .
- VI. Let V be a vector space and let $S = \{v_1, \ldots, v_k\}$ be a subset of V.
- (9)
 - (a) Define what it means to say that S is *linearly independent*.
 - (b) Define what it means to say that S is a *basis* of V.
 - (c) If V has dimension 6 and S is a subset consisting of five elements of V, what can you say about S, beyond just the fact that it is not a basis?
 - (d) If V has dimension 6 and S is a subset consisting of seven elements of V, what can you say about S, beyond just the fact that it is not a basis?

Let $V = \mathbb{R}_3$ (the vector space of 1×3 vectors), and let $S = \left\{ \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}, \begin{bmatrix} 2 & 2 & 3 \end{bmatrix}, \begin{bmatrix} 5 & 2 & 3 \end{bmatrix} \right\}$. Test S for linear independence. If it is not linear independence. VII. (6)for linear independence. If it is not linearly independent, write one of its elements as a linear combination of the others.

- **VIII.** If an $n \times n$ nonsingular matrix A is equivalent to a matrix B, then B must also be nonsingular. Why? (4)
- If P is a nonsingular $n \times n$ matrix, then its transpose P^T must also be nonsingular. Why? IX.

(4)

- \mathbf{X} . Let V be the vector space of all differentiable functions from the real numbers to the real numbers, with
- (6) the usual addition and scalar multiplication operations.
- (a) Verify that the subset $\{1, x, x^2, x^3\}$ is a linearly independent subset of V (hint: suppose you have the zero function 0 written as a linear combination of these functions, then take derivatives three times).
- (b) The same kind of argument as in (a) can be used to show that the set $\{1, x, x^2, x^3, x^4\}$ is a linearly independent subset of V, and even that the sets $\{1, x, x^2, x^3, \dots, x^n\}$ are linearly independent for any choice of n (do not try to check these facts). What does this tell us about the dimension of V. Why?