I. Use the row operation method to calculate the inverse of the matrix $\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 3 \\ 0 & 1 & 1\end{array}\right]$.
II. Let $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 2 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]$ and $B=\left[\begin{array}{ccc}-1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]$.
(a) Show that A and B are row equivalent. Give a list of elementary matrices E_{1}, \ldots, E_{k} for which $E_{k} \cdots E_{1} A=$ B.
(b) Explain why A and B cannot be column equivalent.
III. Let V be a vector space and let $S=\left\{v_{1}, \ldots, v_{k}\right\}$ be a subset of V. Recall that $\operatorname{span}(S)$ is the set of all
(4) linear combinations of element of S, that is, $\left\{\sum_{i=1}^{k} \lambda_{i} v_{i} \mid \lambda_{i} \in \mathbb{R}\right\}$. Verify that $\operatorname{span}(S)$ is a subspace of V.
IV. Let $W=\left\{a t^{2}+b t+c \mid c \geq 0\right\}$, that is, the set of all polynomials of degree at most 2 and having non-negative (3) constant term. By giving a specific counterexample, show that W is not a subspace of P_{2} (the vector space of all polynomials of degree at most 2).
V. Let A be an $m \times n$ matrix and consider the homogeneous system of linear equations given by $A X=0$. Its
(4) solutions form a subset of \mathbb{R}^{n}. Verify that the set of solutions is a subspace of \mathbb{R}^{n}.
VI. Let V be a vector space and let $S=\left\{v_{1}, \ldots, v_{k}\right\}$ be a subset of V.
(9)
(a) Define what it means to say that S is linearly independent.
(b) Define what it means to say that S is a basis of V.
(c) If V has dimension 6 and S is a subset consisting of five elements of V, what can you say about S, beyond just the fact that it is not a basis?
(d) If V has dimension 6 and S is a subset consisting of seven elements of V, what can you say about S, beyond just the fact that it is not a basis?
VII. Let $V=\mathbb{R}_{3}$ (the vector space of 1×3 vectors), and let $S=\left\{\left[\begin{array}{lll}1 & 2 & 3\end{array}\right],\left[\begin{array}{lll}2 & 2 & 3\end{array}\right],\left[\begin{array}{lll}5 & 2 & 3\end{array}\right]\right\}$. Test S for linear independence. If it is not linearly independent, write one of its elements as a linear combination of the others.
VIII. If an $n \times n$ nonsingular matrix A is equivalent to a matrix B, then B must also be nonsingular. Why?
IX. If P is a nonsingular $n \times n$ matrix, then its transpose P^{T} must also be nonsingular. Why?
(4)
X. Let V be the vector space of all differentiable functions from the real numbers to the real numbers, with
(6) the usual addition and scalar multiplication operations.
(a) Verify that the subset $\left\{1, x, x^{2}, x^{3}\right\}$ is a linearly independent subset of V (hint: suppose you have the zero function 0 written as a linear combination of these functions, then take derivatives three times).
(b) The same kind of argument as in (a) can be used to show that the set $\left\{1, x, x^{2}, x^{3}, x^{4}\right\}$ is a linearly independent subset of V, and even that the sets $\left\{1, x, x^{2}, x^{3}, \ldots, x^{n}\right\}$ are linearly independent for any choice of n (do not try to check these facts). What does this tell us about the dimension of V. Why?

