Instructions: Give concise answers, but clearly indicate your reasoning.
I.
(8) \quad Let A be the matrix $\left[\begin{array}{cccc}2 & 4 & -2 & 0 \\ 1 & 3 & -1 & -3 \\ 2 & 5 & -2 & -3\end{array}\right]$.
(a) Find a basis for the row space of A.
(b) Find a basis for the column space of A.
II. A certain 14×10 matrix A has rank 8 .
(6)
(a) What is the dimension of the solution space of the homogeneous system $A X=0$?
(b) Can one solve the linear system $A X=B$ for all choices of B ? Why or why not?
III. Let V be a vector space with an inner product $\left({ }_{-},{ }_{-}\right)$.
(a) Let w_{0} be a fixed vector in V. Show that the set of vectors orthogonal to w_{0} is a subspace of V.
(b) Define what it means to say that a set of vectors $S=\left\{v_{1}, \ldots, v_{n}\right\}$ in V is orthogonal.
(c) Define what it means to say that a set of vectors $S=\left\{v_{1}, \ldots, v_{n}\right\}$ in V is orthonormal.
IV. By counting the number of inversions in the permuation 48253176 of eight elements, determine whether
(3) this permutation is even or odd.
V. Use the row operation method to calculate the determinant
$(3)$$\left|\begin{array}{lll}3 & 4 & 2 \\ 2 & 5 & 0 \\ 6 & 2 & -1\end{array}\right|$.
$\underset{\substack{\text { (6) } \\ \text { VI. }}}{ } \quad$ Let $A=\left[\begin{array}{ccc}t & 1 & 2 \\ -t & 1 & 1 \\ 0 & 2 & t\end{array}\right]$.
(a) Calculate that $\operatorname{det}(A)=2 t(t-3)$ by using cofactor expansion of the determinant down the first column.
(b) Use the expression for $\operatorname{det}(A)$ in part (a) (even if you did not carry out the calculation) to determine the values of t for which A is singular.
VII. As usual, let P_{3} be the 4-dimensional vector space of polynomials of degree at most 3 . Let $D: P_{3} \rightarrow P_{3}$
(4) be differentiation, a linear transformation. What is the kernel of D ? What is the range of D ? (Remark: there is no need to use a matrix representation. Just think about what polynomials are in the kernel and range.)
VIII. Let $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the linear transformation defined by

$$
L\left(\left[\begin{array}{c}
x \tag{15}\\
y \\
z
\end{array}\right]\right)=\left[\begin{array}{c}
2 x-z \\
2 x-y \\
x+2 y-z
\end{array}\right]
$$

(a) Find the standard matrix representation for L, that is, find the matrix A so that $A X=L(X)$ for every X in \mathbb{R}^{3}.
(b) Consider the ordered basis $S=\left\{\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 2 \\ 2\end{array}\right],\left[\begin{array}{c}-1 \\ -1 \\ 1\end{array}\right]\right\}$ for \mathbb{R}^{3}. By solving the system

$$
\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\lambda_{1}\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]+\lambda_{2}\left[\begin{array}{l}
1 \\
2 \\
2
\end{array}\right]+\lambda_{3}\left[\begin{array}{c}
-1 \\
-1 \\
1
\end{array}\right]
$$

for λ_{1}, λ_{2}, and λ_{3}, obtain a formula of the form $\left[\begin{array}{l}a \\ b \\ c\end{array}\right]_{S}=\left[\begin{array}{l}\lambda_{1} \\ \lambda_{2} \\ \lambda_{3}\end{array}\right]$ to convert a vector v in \mathbb{R}^{3} into its corresponding vector v_{S}.
(c) Check that the formula that you found in part (b) really does convert the three vectors in the basis S to the standard basis vectors, that is, it should tell you that $\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]_{S}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$ and similarly for the second and third vectors in S. If it does not, go back and do part (b) correctly.
(d) Find the matrix representation of L with respect to the basis S given in part (b). That is, find the matrix A so that $A v_{S}=(L(v))_{S}$.

