Examination III April 28, 2009

Instructions: Give concise answers, but clearly indicate your reasoning.

I . (8)	Let A be the matrix	$\left[2\right]$	4	-2	0	
		1	3	-1	-3	
		$\lfloor 2$	5	-2	-3	

(a) Find a basis for the row space of A.

(b) Find a basis for the column space of A.

II. A certain 14×10 matrix A has rank 8.

- (6) (a) What is the dimension of the solution space of the homogeneous system AX = 0?
- (b) Can one solve the linear system AX = B for all choices of B? Why or why not?

III. Let V be a vector space with an inner product $(_, _)$.

(7) (a) Let w_0 be a fixed vector in V. Show that the set of vectors orthogonal to w_0 is a subspace of V.

(b) Define what it means to say that a set of vectors $S = \{v_1, \ldots, v_n\}$ in V is orthogonal.

- (c) Define what it means to say that a set of vectors $S = \{v_1, \ldots, v_n\}$ in V is orthonormal.
- IV. By counting the number of inversions in the permuation 48253176 of eight elements, determine whether(3) this permutation is even or odd.

L

		3	4	2	
V . (3)	Use the <i>row operation</i> method to calculate the determinant	2	5	0	•
		6	2	-1	

VI. Let $A = \begin{vmatrix} t & 1 & 2 \\ -t & 1 & 1 \\ 0 & 2 & t \end{vmatrix}$.

- (a) Calculate that det(A) = 2t(t-3) by using cofactor expansion of the determinant down the first column.
- (b) Use the expression for det(A) in part (a) (even if you did not carry out the calculation) to determine the values of t for which A is singular.
- VII. As usual, let P_3 be the 4-dimensional vector space of polynomials of degree at most 3. Let $D: P_3 \to P_3$ (4) be differentiation, a linear transformation. What is the kernel of D? What is the range of D? (Remark: there is no need to use a matrix representation. Just think about what polynomials are in the kernel and range.)

VIII. Let $L: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation defined by (15)

$$L\left(\begin{bmatrix}x\\y\\z\end{bmatrix}\right) = \begin{bmatrix}2x-z\\2x-y\\x+2y-z\end{bmatrix}$$

(a) Find the standard matrix representation for L, that is, find the matrix A so that AX = L(X) for every X in \mathbb{R}^3 .

(b) Consider the ordered basis
$$S = \left\{ \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\2\\2 \end{bmatrix}, \begin{bmatrix} -1\\-1\\1\\1 \end{bmatrix} \right\}$$
 for \mathbb{R}^3 . By solving the system
$$\begin{bmatrix} a\\b\\c \end{bmatrix} = \lambda_1 \begin{bmatrix} 1\\1\\0\\0 \end{bmatrix} + \lambda_2 \begin{bmatrix} 1\\2\\2\\2\\1 \end{bmatrix} + \lambda_3 \begin{bmatrix} -1\\-1\\-1\\1\\1 \end{bmatrix}$$
for λ_1, λ_2 , and λ_3 , obtain a formula of the form $\begin{bmatrix} a\\b\\c\\s\\s \end{bmatrix} = \begin{bmatrix} \lambda_1\\\lambda_2\\\lambda_3\\1 \end{bmatrix}$ to convert a vector v in \mathbb{R}^3 into its corresponding vector v_S .

(c) Check that the formula that you found in part (b) really does convert the three vectors in the basis S to the

standard basis vectors, that is, it should tell you that $\begin{bmatrix} 1\\1\\0 \end{bmatrix}_{S} = \begin{bmatrix} 1\\0\\0 \end{bmatrix}$ and similarly for the second and third

vectors in S. If it does not, go back and do part (b) correctly.

(d) Find the matrix representation of L with respect to the basis S given in part (b). That is, find the matrix A so that $Av_S = (L(v))_S$.