Math 6823 homework

1. (due 2/3) 2.1 \# 28, 29
2. $(2 / 3) 2.1 \# 31$
3. $(2 / 3) 2.2 \# 4$
4. $(2 / 12) 2.2 \# 3,5$ (the reflection in a hyperplane H with $0 \in H$ sends x to $x-2\langle x, u\rangle u$ where u is a unit normal to H), 6
5. (2/12) $2.2 \# 12,13$ (to prove $X \simeq S^{2}$, one can apply Proposition 0.18), 15
6. (2/12) $2.2 \# 20$ (induct on the number of cells of X), 23 (you may assume the result in problem 22)
7. $(2 / 26) 2.2 \# 27,28,32$
8. $(2 / 26) 2.3$ \# 1, 2
9. (3/5) First convince youself that for a homomorphism $h: \mathbb{Z}^{m} \rightarrow \mathbb{Z}^{n}$ given by a matrix A, the matrix of $h^{*}: \operatorname{Hom}\left(\mathbb{Z}^{n}, \mathbb{Z}\right) \rightarrow \operatorname{Hom}\left(\mathbb{Z}^{m}, \mathbb{Z}\right)$ with respect to the dual bases is the transpose of A, and the matrix of $h^{*}: \operatorname{Hom}\left(\mathbb{Z}^{n}, \mathbb{Z} / 2\right) \rightarrow \operatorname{Hom}\left(\mathbb{Z}^{m}, \mathbb{Z} / 2\right)$ is the $\bmod 2$ reduction of the transpose. Then do $3.1 \# 6$ for the Klein bottle case (do the torus and/or projective plane case if you have time and think it is worthwhile).
10. (3/5) 3.1 \# 1 (For the contravariant functor, use the Fundamental Lemma. For the covariant one, given a homomorphism $\beta: G \rightarrow G^{\prime}$, define $\beta_{\#}: \operatorname{Hom}\left(F_{i}, G\right) \rightarrow$ $\operatorname{Hom}\left(F_{i}, G^{\prime}\right)$ by $\beta_{\#}(\phi)=\beta \circ \phi$. Check that this is a chain map, so induces $\beta_{*}: H^{n}(F ; G) \rightarrow$ $H^{n}\left(F ; G^{\prime}\right)$ defined by $\beta_{*}[\phi]=\left[\beta_{\#}(\phi)\right]$. You will need to check the functorial properties, which is straightforward), 2 (use problem 1), 3 (This problem gives a relatively simple example of nontrivial higher Ext groups, where $\operatorname{Ext}_{R}^{n}(H, G)$ is defined on page 197. In this problem, $\mathbb{Z} / 2$ is regarded as a $\mathbb{Z} / 4$-module just by $a \cdot b=a b \in \mathbb{Z} / 2$ for $a \in \mathbb{Z} / 4=\{0,1,2,3\}$ and $b \in \mathbb{Z} / 2=\{0,1\}$. There is a $\mathbb{Z} / 4$-module homomorphism $p: \mathbb{Z} / 4 \rightarrow \mathbb{Z} / 2$ defined by reduction $\bmod 2$. A free $\mathbb{Z} / 4$ resolution of $\mathbb{Z} / 2$ is obtained by taking each $F_{i} \cong \mathbb{Z} / 4$ and each $f_{i}=q$, where $q(x)=2 x$. Now you just need to work out $\operatorname{Hom}(\mathbb{Z} / 4, \mathbb{Z} / 2)$ and q^{*} to compute $\operatorname{Ext}_{\mathbb{Z} / 4}^{n}(\mathbb{Z} / 2, \mathbb{Z} / 2)$.)
11. (4/2) 3.1 \# 9 (use the Universal Coefficient Theorem)
12. (4/2) 3.2 \# 2
13. (4/2) $3.2 \# 3$ (Just do the case $n \geq 3$. The map $g: S^{n} \rightarrow S^{n-1}$ induces $\bar{g}: \mathbb{R}^{n} \rightarrow$ $\mathbb{R}^{P^{n-1}}$. First show that $\bar{g}_{\#}: \pi_{1}\left(\mathbb{R} \mathbb{P}^{n}\right) \rightarrow \pi_{1}\left(\mathbb{R} \mathbb{P}^{n-1}\right)$ is an isomorphism; both of the fundamental groups are $\mathbb{Z} / 2$, lift a generator α to a path in S^{n}, observe that g sends it to a lift of the nontrivial element of $\pi_{1}\left(\mathbb{R} \mathbb{P}^{n-1}\right)$, and argue from there. Next, since H_{1} is the abelianization of π_{1}, we can conclude that $\bar{g}_{*}: H_{1}\left(\mathbb{R} \mathbb{P}^{n}\right) \rightarrow H_{1}\left(\mathbb{R P}^{n-1}\right)$ is an isomorphism. Now, use the commutative diagram whose vertical arrows are the isomorphisms $h: H^{1}\left(\mathbb{R} \mathbb{P}^{n} ; \mathbb{Z} / 2\right) \rightarrow \operatorname{Hom}\left(H_{1}\left(\mathbb{R} \mathbb{P}^{n}\right), \mathbb{Z} / 2\right)$ and similarly for $\mathbb{R} \mathbb{P}^{n-1}$ to deduce that $\bar{g}^{*}: H^{1}\left(\mathbb{R}^{P}{ }^{n-1} ; \mathbb{Z} / 2\right) \rightarrow H^{1}\left(\mathbb{R P}^{n} ; \mathbb{Z} / 2\right)$ is an isomorphism. $)$
14. (4/2) $3.2 \# 6$ (for the case $n=1$, use the homeomorphism from $\mathbb{C P}^{1}=S^{2}$ to $\mathbb{C} \cup\{\infty\}$ that sends $\left[z_{0}, z_{1}\right]$ to $\left.z_{0} / z_{1}\right)$
15. $(4 / 16) 3.2$ \# 11
16. (4/16) $3.3 \# 2$ (first observe that if $p: \widetilde{M} \rightarrow M$ is the orientable double cover, then the orientable double cover of $M-x$ is $\widetilde{M}-p^{-1}(x)$, then use the fact that the orientable double covering is connected if and only if M is nonorientable), 3 (use the local homeomorphism property and excisions to get isomorphisms $H_{n}(\widetilde{M} \mid \widetilde{x}) \cong H_{n}(M \mid x)$, and use these to lift the μ_{x} in the orientation of M to local orientations in \widetilde{M}; for local consistency use the fact that each open ball B is evenly covered and if \widetilde{B} is a component of the preimage of B then we have a natural isomorphism $H_{n}(\widetilde{M} \mid \widetilde{B}) \rightarrow H_{n}(M \mid B)$ given by excisions and $\left.\left(\left.p\right|_{\widetilde{B}}\right)_{*}\right), 4$ (this one is completely optional, don't worry about it if you already have spent significant time on problems 2 and 3; use the local homology isomorphisms in problem 3, this time to define local orientations on M / G; the fact that the action is orientation-preserving says that for each covering transformation g and each $x \in M, g_{*}: H_{n}(M \mid x) \rightarrow H_{n}(M \mid g(x))$ takes μ_{x} to $\mu_{g(x)}$, so that the local orientations defined in M / G do not depend on the choice of point in the preimage).
17. $(4 / 30) 3.3 \# 7$ (In this problem, a fundamental class is a generator of $H_{n}(M ; \mathbb{Z}) \cong \mathbb{Z}$. To define the map $f: M \rightarrow S^{n}$, choose a closed n-ball D in M, let B be its interior, and use the quotient map $M \rightarrow M /(M-B) \approx D / \partial D \approx S^{n}$. Then make use of Theorem 3.26.), 16 (You may assume that α is a single k-simplex, and just verify the formula at the chain level using the definitions- you need not verify all the module properties. The main point of the problem is that the formula says that $(x r) s=x(r s)$ for $x \in H_{*}(X)$ and $r, s \in H^{*}(X)$. The other module properties come from R-bilinearity of the cap product.)
18. (4/30) 3.3 \# 20
19. (4/30) Verify that if I_{0} is a cofinal subset of a directed set I, and $\left\{G_{\alpha}\right\}_{\alpha \in I}$ is a directed system, then $\xrightarrow{\lim }\left\{G_{\alpha}\right\}_{\alpha \in I_{0}}$ is isomorphic to $\xrightarrow{\lim }\left\{G_{\alpha}\right\}_{\alpha \in I}$.
