
Math 6823 homework

1. (due 2/3) 2.1 # 28, 29

2. (2/3) 2.1 # 31

3. (2/3) 2.2 # 4

4. (2/12) 2.2 # 3, 5 (the reflection in a hyperplane H with 0 ∈ H sends x to x− 2〈x, u〉u
where u is a unit normal to H), 6

5. (2/12) 2.2 # 12, 13 (to prove X ' S2, one can apply Proposition 0.18), 15

6. (2/12) 2.2 # 20 (induct on the number of cells of X), 23 (you may assume the result
in problem 22)

7. (2/26) 2.2 # 27, 28, 32

8. (2/26) 2.3 # 1, 2

9. (3/5) First convince youself that for a homomorphism h : Zm → Zn given by a matrix
A, the matrix of h∗ : Hom(Zn, Z) → Hom(Zm, Z) with respect to the dual bases is the
transpose of A, and the matrix of h∗ : Hom(Zn, Z/2) → Hom(Zm, Z/2) is the mod 2
reduction of the transpose. Then do 3.1 # 6 for the Klein bottle case (do the torus
and/or projective plane case if you have time and think it is worthwhile).

10. (3/5) 3.1 # 1 (For the contravariant functor, use the Fundamental Lemma. For
the covariant one, given a homomorphism β : G → G′, define β# : Hom(Fi, G) →
Hom(Fi, G

′) by β#(φ) = β◦φ. Check that this is a chain map, so induces β∗ : Hn(F ; G) →
Hn(F ; G′) defined by β∗[φ] = [β#(φ)]. You will need to check the functorial proper-
ties, which is straightforward), 2 (use problem 1), 3 (This problem gives a relatively
simple example of nontrivial higher Ext groups, where Extn

R(H, G) is defined on page
197. In this problem, Z/2 is regarded as a Z/4-module just by a · b = ab ∈ Z/2 for
a ∈ Z/4 = {0, 1, 2, 3} and b ∈ Z/2 = {0, 1}. There is a Z/4-module homomorphism
p : Z/4 → Z/2 defined by reduction mod 2. A free Z/4 resolution of Z/2 is obtained
by taking each Fi

∼= Z/4 and each fi = q, where q(x) = 2x. Now you just need to work
out Hom(Z/4, Z/2) and q∗ to compute Extn

Z/4(Z/2, Z/2).)

11. (4/2) 3.1 # 9 (use the Universal Coefficient Theorem)

12. (4/2) 3.2 # 2



13. (4/2) 3.2 # 3 (Just do the case n ≥ 3. The map g : Sn → Sn−1 induces g : RPn →
RPn−1. First show that g# : π1(RPn) → π1(RPn−1) is an isomorphism; both of the
fundamental groups are Z/2, lift a generator α to a path in Sn, observe that g sends
it to a lift of the nontrivial element of π1(RPn−1), and argue from there. Next, since
H1 is the abelianization of π1, we can conclude that g∗ : H1(RPn) → H1(RPn−1) is
an isomorphism. Now, use the commutative diagram whose vertical arrows are the
isomorphisms h : H1(RPn; Z/2) → Hom(H1(RPn), Z/2) and similarly for RPn−1 to
deduce that g∗ : H1(RPn−1; Z/2) → H1(RPn; Z/2) is an isomorphism.)

14. (4/2) 3.2 # 6 (for the case n = 1, use the homeomorphism from CP1 = S2 to C∪{∞}
that sends [z0, z1] to z0/z1)

15. (4/16) 3.2 # 11

16. (4/16) 3.3 # 2 (first observe that if p : M̃ → M is the orientable double cover, then the

orientable double cover of M − x is M̃ − p−1(x), then use the fact that the orientable
double covering is connected if and only if M is nonorientable), 3 (use the local home-

omorphism property and excisions to get isomorphisms Hn(M̃ |x̃) ∼= Hn(M |x), and use

these to lift the µx in the orientation of M to local orientations in M̃ ; for local consis-
tency use the fact that each open ball B is evenly covered and if B̃ is a component of
the preimage of B then we have a natural isomorphism Hn(M̃ |B̃) → Hn(M |B) given
by excisions and (p| eB)∗), 4 (this one is completely optional, don’t worry about it if
you already have spent significant time on problems 2 and 3; use the local homology
isomorphisms in problem 3, this time to define local orientations on M/G; the fact
that the action is orientation-preserving says that for each covering transformation g
and each x ∈ M , g∗ : Hn(M |x) → Hn(M |g(x)) takes µx to µg(x), so that the local
orientations defined in M/G do not depend on the choice of point in the preimage).

17. (4/30) 3.3 # 7 (In this problem, a fundamental class is a generator of Hn(M ; Z) ∼= Z.
To define the map f : M → Sn, choose a closed n-ball D in M , let B be its interior,
and use the quotient map M → M/(M − B) ≈ D/∂D ≈ Sn. Then make use of
Theorem 3.26.), 16 (You may assume that α is a single k-simplex, and just verify the
formula at the chain level using the definitions— you need not verify all the module
properties. The main point of the problem is that the formula says that (xr)s = x(rs)
for x ∈ H∗(X) and r, s ∈ H∗(X). The other module properties come from R-bilinearity
of the cap product.)

18. (4/30) 3.3 # 20

19. (4/30) Verify that if I0 is a cofinal subset of a directed set I, and {Gα}α∈I is a directed
system, then lim−→{Gα}α∈I0 is isomorphic to lim−→{Gα}α∈I .


