Instructions: Insofar as possible, give brief, clear answers. Use major theorems when possible. Assume that homology and cohomology are with \mathbb{Z} coefficients unless otherwise indicated.
I. Let C be a chain complex and let $[\varphi] \in H^{n}(C ; G)$.
(6)
(a) Use the fact that φ is a cocycle to show that φ induces a homomorphism $\overline{\left.\varphi\right|_{Z_{n}}}: H_{n}(C) \rightarrow G$.
(b) Show that if φ is a coboundary, then $\bar{\varphi}$ is the zero homomorphism. That is, sending the cohomology class $[\varphi]$ to $\bar{\varphi}$ is a well-defined homomorphism $h: H^{n}(C ; G) \rightarrow \operatorname{Hom}\left(H_{n}(C), G\right)$.
II. Let Y be the space obtained from the 3 -sphere S^{3} by attaching a 4 -cell using a map of degree 6 . It has a
(9) CW-complex structure with one cell in each of the dimensions 0,3 , and 4 .
(a) Use cellular homology to calculate the homology of Y with \mathbb{Z} coefficients.
(b) Use the Universal Coefficient Theorem to calculate the cohomology of Y with \mathbb{Z} coefficients. You may use the fact that $\operatorname{Ext}(\mathbb{Z} / m, G) \cong G / m G, \operatorname{soxt}(\mathbb{Z} / m, \mathbb{Z}) \cong \mathbb{Z} / m$.
(c) Use the Universal Coefficient Theorem to calculate the cohomology of Y with $\mathbb{Z} / 3$ coefficients. You may use the fact that $\operatorname{Ext}(\mathbb{Z} / m, G) \cong G / m G, \operatorname{so} \operatorname{Ext}(\mathbb{Z} / m, \mathbb{Z} / n) \cong \mathbb{Z} / \operatorname{gcd}(m, n)$.
III. Give an example of a short exact sequence $0 \rightarrow A \xrightarrow{\alpha} B \xrightarrow{\beta} C \rightarrow 0$ of abelian groups that does not split.
(6) Give an example of a short exact sequence of nonabelian groups so that β has a section, but B is not the direct product of A and C.
IV. Regarding the Klein bottle K as two Möbius bands glued together along their boundaries, use the Mayer(8) Vietoris sequence to calculate the homology groups of K.
V. Give the definitions of $\varphi \cup \psi$, where $\varphi \in C^{k}(X ; G)$ and $\psi \in C^{\ell}(X ; G)$, and of $\sigma \cap \varphi$, where σ is a singular (6) $(k+\ell)$-simplex in X.
VI. Use Poincaré Duality to show that if M is a closed odd-dimensional manifold, then the Euler characteristic
(6) of M is 0 . You may use the fact that $H^{i}(M ; F) \cong \operatorname{Hom}\left(H_{i}(M ; F), F\right)$ when F is a field, and also the fact that the $H_{i}(M ; F)$ are finite-dimensional.
VII. Recall that if X and Y are $C W$-complexes and each $H^{k}(Y ; R)$ is free and finitely generated (as an R -
(7) module), then $H^{*}(X \times Y ; R) \cong H^{*}(X ; R) \otimes H^{*}(Y ; R)$ as graded rings. Take as known the fact that for $n \geq 1, H^{*}\left(S^{n}\right) \cong H^{0}\left(S^{n}\right) \oplus H^{n}\left(S^{n}\right)$, with $H^{0}\left(S^{n}\right) \cong \mathbb{Z}$ generated by $1, H^{n}\left(S^{n}\right) \cong \mathbb{Z}$ generated by an element α_{n}, and $\alpha_{n} \cup \alpha_{n}=0$.
(a) Use this theorem to write down the cohomology ring $H^{*}\left(S^{n} \times S^{n}\right)$.
(b) Tell a ring isomorphism (not a graded ring isomorphism) from $H^{*}\left(S^{2} \times S^{2}\right)$ to $H^{*}\left(S^{4} \times S^{4}\right)$. You do not need to verify that it is is an isomorphism, just write it down.
(c) Show that $H^{*}\left(S^{2} \times S^{2}\right)$ and $H^{*}\left(S^{3} \times S^{3}\right)$ are not isomorphic as rings.
VIII. Let U be an open subset of an R-orientable n-manifold M, and let $\left\{\mu_{x}\right\}_{x \in M}$ be an R-orientation of M. Verify that $\left\{\mu_{x}\right\}_{x \in U}$ is an R-orientation of U (i. e. is locally consistent for U).
IX. Let M be a closed connected R-orientable n-manifold. What is a fundamental class for M (with R (6) coefficients)? State Poincaré Duality for this closed M in terms of a fundamental class.
X. Let $f:\left(I^{n}, \partial I^{n}\right) \rightarrow\left(X, x_{0}\right)$ represent an element of $\pi_{n}\left(X, x_{0}\right)$, and let $\omega:(I, \partial I) \rightarrow\left(X, x_{0}\right)$ be a loop based
(6) at x_{0}. Draw a picture and use it to describe a function $\omega f:\left(I^{n}, \partial I^{n}\right) \rightarrow\left(X, x_{0}\right)$ that represents the result $[\omega] \cdot[f]$ of the element $[\omega] \in \pi_{1}\left(X, x_{0}\right)$ acting on the element $[f] \in \pi_{n}\left(X, x_{0}\right)$. Do the same if one is thinking of f as a map from $\left(S^{n}, s_{0}\right) \rightarrow\left(X, x_{0}\right)$.
XI. Let M be a simply-connected n-manifold. Show that M is orientable. (Hint: what do we know about the (6) covering spaces of a simply-connected space?)

