Instructions: Insofar as possible, give brief, clear answers. Use major theorems when possible. Assume that homology and cohomology are with \mathbb{Z} coefficients unless otherwise indicated.
I. Let C be a chain complex and let $[\varphi] \in H^{n}(C ; G)$.
${ }^{(6)}$ (a) Use the fact that φ is a cocycle to show that φ induces a homomorphism $\overline{\left.\varphi\right|_{Z_{n}}}: H_{n}(C) \rightarrow G$.
The cocycle condition $0=\delta_{n} \varphi=\varphi \partial_{n+1}$ says that $0=\varphi\left(\partial_{n+1}\left(C_{n+1}\right)\right)=\varphi\left(B_{n}\right)$, so $\left.\varphi\right|_{Z_{n}}: Z_{n} \rightarrow G$ induces $\overline{\left.\varphi\right|_{Z_{n}}}: Z_{n} / B_{n}=H_{n}(C) \rightarrow G$.
(b) Show that if φ is a coboundary, then $\bar{\varphi}$ is the zero homomorphism. That is, sending the cohomology class $[\varphi]$ to $\bar{\varphi}$ is a well-defined homomorphism $h: H^{n}(C ; G) \rightarrow \operatorname{Hom}\left(H_{n}(C), G\right)$.

$$
\text { If } \varphi=\delta \phi=\phi \circ \partial_{n}, \text { then }\left.\varphi\right|_{Z_{n}}\left(Z_{n}\right)=\phi \circ \partial_{n}\left(Z_{n}\right)=\phi(0)=0
$$

II. Let Y be the space obtained from the 3 -sphere S^{3} by attaching a 4 -cell using a map of degree 6 . It has a
(9) CW-complex structure with one cell in each of the dimensions 0,3 , and 4 .
(a) Use cellular homology to calculate the homology of Y with \mathbb{Z} coefficients.

The cellular chain complex of Y terminates with

$$
0 \rightarrow \mathbb{Z} \xrightarrow{\partial_{4}} \mathbb{Z} \rightarrow 0 \rightarrow 0 \rightarrow \mathbb{Z} \rightarrow 0
$$

Clearly we have $H_{0}(Y) \cong \mathbb{Z}$. Since ∂_{4} is multiplication by 6 , its kernel $H_{4}(Y)$ is 0 and its cokernel $H_{3}(Y)$ is $\mathbb{Z} / 6$.
(b) Use the Universal Coefficient Theorem to calculate the cohomology of Y with \mathbb{Z} coefficients. You may use the fact that $\operatorname{Ext}(\mathbb{Z} / m, G) \cong G / m G$, $\operatorname{so} \operatorname{Ext}(\mathbb{Z} / m, \mathbb{Z}) \cong \mathbb{Z} / m$.

From

$$
0 \rightarrow \operatorname{Ext}\left(H_{-1}(Y), \mathbb{Z}\right) \rightarrow H^{0}(Y) \rightarrow \operatorname{Hom}\left(H_{0}(Y), \mathbb{Z}\right) \rightarrow 0
$$

we have $H^{0}(Y) \cong \operatorname{Hom}\left(H_{0}(Y), \mathbb{Z}\right) \cong \operatorname{Hom}(\mathbb{Z}, \mathbb{Z}) \cong \mathbb{Z}$. From

$$
0 \rightarrow \operatorname{Ext}\left(H_{2}(Y), \mathbb{Z}\right) \rightarrow H^{3}(Y) \rightarrow \operatorname{Hom}\left(H_{3}(Y), \mathbb{Z}\right) \rightarrow 0
$$

we have $H^{3}(Y) \cong \operatorname{Hom}\left(H_{3}(Y), \mathbb{Z}\right) \cong \operatorname{Hom}(\mathbb{Z} / 6, \mathbb{Z}) \cong 0$. From

$$
0 \rightarrow \operatorname{Ext}\left(H_{3}(Y), \mathbb{Z}\right) \rightarrow H^{4}(Y) \rightarrow \operatorname{Hom}\left(H_{4}(Y), \mathbb{Z}\right) \rightarrow 0
$$

we have $H^{4}(Y) \cong \operatorname{Ext}\left(H_{3}(Y), \mathbb{Z}\right) \cong \operatorname{Ext}(\mathbb{Z} / 6, \mathbb{Z}) \cong \mathbb{Z} / 6$.
(c) Use the Universal Coefficient Theorem to calculate the cohomology of Y with $\mathbb{Z} / 3$ coefficients. You may use the fact that $\operatorname{Ext}(\mathbb{Z} / m, G) \cong G / m G, \operatorname{so} \operatorname{Ext}(\mathbb{Z} / m, \mathbb{Z} / n) \cong \mathbb{Z} / \operatorname{gcd}(m, n)$.

From

$$
0 \rightarrow \operatorname{Ext}\left(H_{-1}(Y), \mathbb{Z} / 3\right) \rightarrow H^{0}(Y ; \mathbb{Z} / 3) \rightarrow \operatorname{Hom}\left(H_{0}(Y), \mathbb{Z} / 3\right) \rightarrow 0
$$

we have $H^{0}(Y ; \mathbb{Z} / 3) \cong \operatorname{Hom}\left(H_{0}(Y), \mathbb{Z} / 3\right) \cong \operatorname{Hom}(\mathbb{Z}, \mathbb{Z} / 3) \cong \mathbb{Z} / 3$. From

$$
0 \rightarrow \operatorname{Ext}\left(H_{2}(Y), \mathbb{Z} / 3\right) \rightarrow H^{3}(Y ; \mathbb{Z} / 3) \rightarrow \operatorname{Hom}\left(H_{3}(Y), \mathbb{Z} / 3\right) \rightarrow 0
$$

we have $H^{3}(Y ; \mathbb{Z} / 3) \cong \operatorname{Hom}\left(H_{3}(Y), \mathbb{Z} / 3\right) \cong \operatorname{Hom}(\mathbb{Z} / 6, \mathbb{Z} / 3) \cong \mathbb{Z} / 3$. From

$$
0 \rightarrow \operatorname{Ext}\left(H_{3}(Y), \mathbb{Z} / 3\right) \rightarrow H^{4}(Y ; \mathbb{Z} / 3) \rightarrow \operatorname{Hom}\left(H_{4}(Y), \mathbb{Z} / 3\right) \rightarrow 0
$$

we have $H^{4}(Y ; \mathbb{Z} / 3) \cong \operatorname{Ext}\left(H_{3}(Y), \mathbb{Z} / 3\right) \cong \operatorname{Ext}(\mathbb{Z} / 6, \mathbb{Z} / 3) \cong \mathbb{Z} / 3$.
III. Give an example of a short exact sequence $0 \rightarrow A \xrightarrow{\alpha} B \xrightarrow{\beta} C \rightarrow 0$ of abelian groups that does not split.
(6) Give an example of a short exact sequence of nonabelian groups so that β has a section, but B is not the direct product of A and C.

The short exact sequence $0 \rightarrow \mathbb{Z} \xrightarrow{\alpha} \mathbb{Z} \xrightarrow{\beta} \mathbb{Z} / 2 \rightarrow 0$, where α is multiplication by 2 , does not split. The reason is that \mathbb{Z} is torsion-free and therefore the only homomorphism s from $\mathbb{Z} / 2$ to \mathbb{Z} is the zero homomorphism. So one cannot have βs equal to the identity on $\mathbb{Z} / 2$.
The short exact sequence $0 \rightarrow C_{3} \xrightarrow{\alpha} \Sigma_{3} \xrightarrow{\beta} C_{2} \rightarrow 0$ (where Σ_{3} is the permutation group on three letters) has a section $s: C_{2} \rightarrow \Sigma_{3}$ given by sending the generator to any transposition. But Σ_{3} is not isomorphic to the direct sum $C_{2} \oplus C_{3}$, since the latter is abelian.
IV. Regarding the Klein bottle K as two Möbius bands glued together along their boundaries, use the Mayer(8) Vietoris sequence to calculate the homology groups of K.

Let A and B be the two Möbius bands, which intersect in their common boundary circle C. Since K is connected, $H_{0}(K) \cong \mathbb{Z}$. For its other homology groups, we use the reduced Mayer-Vietoris sequence

$$
0 \rightarrow H_{2}(K) \rightarrow H_{1}(C) \xrightarrow{\Phi} H_{1}(A) \oplus H_{1}(B) \rightarrow H_{1}(K) \rightarrow 0
$$

Since A and B are homotopy equivalent to circles, this becomes

$$
0 \rightarrow H_{2}(K) \rightarrow \mathbb{Z} \xrightarrow{\Phi} \mathbb{Z} \oplus \mathbb{Z} \rightarrow H_{1}(K) \rightarrow 0
$$

The generator of $H_{1}(C)$ goes to twice a generator of $H_{1}(A)$ under inclusion, and similarly for $H_{1}(B)$, so we can write $\Phi(1)=(2,-2)$. Therefore Φ is injective, showing that $H_{2}(K)=0$, and $H_{1}(K) \cong$ $\mathbb{Z} \oplus \mathbb{Z} /\langle(2,-2)\rangle \cong \mathbb{Z} \oplus \mathbb{Z} / 2$, where the generators of the quotient are $\overline{(1,0)}$ and $\overline{(1,-1)}$.
V. Give the definitions of $\varphi \cup \psi$, where $\varphi \in C^{k}(X ; G)$ and $\psi \in C^{\ell}(X ; G)$, and of $\sigma \cap \varphi$, where σ is a singular (6) $(k+\ell)$-simplex in X.

Writing $\sigma: \Delta^{k+\ell} \rightarrow X$, where $\Delta^{k+\ell}=\left[v_{0}, \ldots, v_{k+\ell}\right]$, we have

$$
\varphi \cup \psi(\sigma)=\varphi\left(\left.\sigma\right|_{\left[v_{0}, \ldots, v_{k}\right]}\right) \cdot \psi\left(\left.\sigma\right|_{\left[v_{k}, \ldots, v_{k+\ell}\right]}\right)
$$

and

$$
\sigma \cap \varphi=\left.\varphi\left(\left.\sigma\right|_{\left[v_{0}, \ldots, v_{k}\right]}\right) \cdot \sigma\right|_{\left[v_{k}, \ldots, v_{k+\ell}\right]}
$$

VI. Use Poincaré Duality to show that if M is a closed odd-dimensional manifold, then the Euler characteristic of M is 0 . You may use the fact that $H^{i}(M ; F) \cong \operatorname{Hom}\left(H_{i}(M ; F), F\right)$ when F is a field, and also the fact that the $H_{i}(M ; F)$ are finite-dimensional.

We take $R=\mathbb{Z} / 2$, so that M is $\mathbb{Z} / 2$-orientable, each $H_{i}(M)$ is a finite-dimensional $\mathbb{Z} / 2$-vector space, and $H^{k}(M ; \mathbb{Z} / 2) \cong \operatorname{Hom}\left(H_{k}(M ; \mathbb{Z} / 2), \mathbb{Z} / 2\right)$, so $\operatorname{dim}\left(H^{k}(M ; \mathbb{Z} / 2)\right)=\operatorname{dim}\left(H_{k}(M ; \mathbb{Z} / 2)\right)$. By Poincaré Duality, $H^{k}(M ; \mathbb{Z} / 2) \cong H_{n-k}(M ; \mathbb{Z} / 2)$ and hence $\operatorname{dim}\left(H_{k}(M ; \mathbb{Z} / 2)\right)=\operatorname{dim}\left(H^{k}(M ; \mathbb{Z} / 2)\right)=$ $\operatorname{dim}\left(H_{n-k}(M ; \mathbb{Z} / 2)\right)$. So we have

$$
\begin{gathered}
\chi(M)=\sum_{k=0}^{n}(-1)^{i} \operatorname{dim}\left(H_{i}(M \mathbb{Z} / 2)\right)=\sum_{k=0}^{(n-1) / 2}(-1)^{i} \operatorname{dim}\left(H_{i}(M ; \mathbb{Z} / 2)\right)+(-1)^{n-i} \operatorname{dim}\left(H_{n-i}(M ; \mathbb{Z} / 2)\right) \\
=\sum_{k=0}^{(n-1) / 2}\left((-1)^{i}+(-1)^{n-i}\right) \operatorname{dim}\left(H_{i}(M ; \mathbb{Z} / 2)\right)=\sum_{k=0}^{(n-1) / 2}(-1)^{i}\left(1+(-1)^{n}\right) \operatorname{dim}\left(H_{i}(M ; \mathbb{Z} / 2)\right)=0 .
\end{gathered}
$$

VII. Recall that if X and Y are $C W$-complexes and each $H^{k}(Y ; R)$ is free and finitely generated (as an R (7) module), then $H^{*}(X \times Y ; R) \cong H^{*}(X ; R) \otimes H^{*}(Y ; R)$ as graded rings. Take as known the fact that for $n \geq 1, H^{*}\left(S^{n}\right) \cong H^{0}\left(S^{n}\right) \oplus H^{n}\left(S^{n}\right)$, with $H^{0}\left(S^{n}\right) \cong \mathbb{Z}$ generated by $1, H^{n}\left(S^{n}\right) \cong \mathbb{Z}$ generated by an element α_{n}, and $\alpha_{n} \cup \alpha_{n}=0$.
(a) Use this theorem to write down the cohomology ring $H^{*}\left(S^{n} \times S^{n}\right)$.

Denote the n-dimensional generators of the two factors by α_{n} and β_{n}. The nonzero cohomology groups are
$H^{0}\left(S^{n} \times S^{n}\right) \cong \mathbb{Z}$ generated by $1 \cup 1=1$,
$H^{n}\left(S^{n} \times S^{n}\right) \cong \mathbb{Z} \oplus \mathbb{Z}$ generated by $\alpha_{n} \cup 1=\alpha_{n}$ and $1 \cup \beta_{n}=\beta_{n}$,
and $H^{2 n}\left(S^{n} \times S^{n}\right) \cong \mathbb{Z}$ generated by $\alpha_{n} \cup \beta_{n}$.
(b) Tell a ring isomorphism (not a graded ring isomorphism) from $H^{*}\left(S^{2} \times S^{2}\right)$ to $H^{*}\left(S^{4} \times S^{4}\right)$. You do not need to verify that it is is an isomorphism, just write it down.

Send α_{2} to α_{4} and β_{2} to β_{4}.
(c) Show that $H^{*}\left(S^{2} \times S^{2}\right)$ and $H^{*}\left(S^{3} \times S^{3}\right)$ are not isomorphic as rings.

All nonzero elements of $H^{*}\left(S^{2} \times S^{2}\right)$ occur in even dimensions, so any two commute. But in $H^{*}\left(S^{3} \times S^{3}\right)$, $\alpha_{3} \cup \beta_{3}=-\beta_{3} \cup \alpha_{3}$.
VIII. Let U be an open subset of an R-orientable n-manifold M, and let $\left\{\mu_{x}\right\}_{x \in M}$ be an R-orientation of M. (6) Verify that $\left\{\mu_{x}\right\}_{x \in U}$ is an R-orientation of U (i. e. is locally consistent for U).

Let $x \in U$. Since $\left\{\mu_{x}\right\}_{x \in M}$ is locally consistent, there is an open n-ball B in M, containing x, and an element $\mu_{B} \in H_{n}(M, M-B ; R)$ such that $H_{n}(M, M-B ; R) \rightarrow H_{n}(M, M-y ; R)$ carries μ_{B} to μ_{y} for every $y \in B$. Since U is open, there is an open n-ball B^{\prime} in U with $x \in B^{\prime}$ and $\overline{B^{\prime}} \subset B$. Since $M-B^{\prime}$ deformation retracts to $M-B$, inclusion induces an isomorphism $H_{n}(M, M-B ; R) \cong$ $H_{n}\left(M, M-B^{\prime} ; R\right)$, which sends μ_{B} to some element $\mu_{B^{\prime}}$. For each $y \in B$, the inclusions induce isomorphisms $H_{n}(M, M-B ; R) \cong H_{n}\left(M, M-B^{\prime} ; R\right) \cong H_{n}(M, M-y ; R)$, and μ_{B} goes to μ_{y}, showing that $\mu_{B^{\prime}}$ goes to μ_{y}. Therefore $\left\{\mu_{x}\right\}_{x \in U}$ is also locally consistent.
IX. Let M be a closed connected R-orientable n-manifold. What is a fundamental class for M (with R (6) coefficients)? State Poincaré Duality for this closed M in terms of a fundamental class.

A fundamental class $[M]$ is a generator of $H_{n}(M ; R) \cong R$. Poincaré Duality says that the R homomorphism $D_{M}: H^{k}(M ; R) \rightarrow H_{n-k}(M ; R)$ given by $D_{M}(\alpha)=[M] \cap \alpha$ is an isomorphism.
X. Let $f:\left(I^{n}, \partial I^{n}\right) \rightarrow\left(X, x_{0}\right)$ represent an element of $\pi_{n}\left(X, x_{0}\right)$, and let $\omega:(I, \partial I) \rightarrow\left(X, x_{0}\right)$ be a loop based
(6) at x_{0}. Draw a picture and use it to describe a function $\omega f:\left(I^{n}, \partial I^{n}\right) \rightarrow\left(X, x_{0}\right)$ that represents the result $[\omega] \cdot[f]$ of the element $[\omega] \in \pi_{1}\left(X, x_{0}\right)$ acting on the element $[f] \in \pi_{n}\left(X, x_{0}\right)$. Do the same if one is thinking of f as a map from $\left(S^{n}, s_{0}\right) \rightarrow\left(X, x_{0}\right)$.
(For the I^{n} case, draw the standard picture where f is a smaller square inside a larger one, and each radial line between the boundaries of the two squares is sent to X by mapping it around the loop ω. For the sphere viewpoint, draw the "balloon" picture and a partial quotient map from S^{n} to the balloon, with the balloon part then mapping by f and the "string" mapping around ω.)
XI. Let M be a simply-connected n-manifold. Show that M is orientable. (Hint: what do we know about the (6) covering spaces of a simply-connected space?)
M cannot have a connected 2-fold covering, since then $\pi_{1}(M)$ would have to contain a subgroup of index 2. Therefore the 2 -fold orientation covering of M has two components, so M is orientable.

