March 12, 2009

Instructions: Insofar as possible, give brief, clear answers. Use major theorems when possible.

- Let $0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0$ be an exact sequence of abelian groups, and let G be an abelian group. Give an I.
- example showing that the sequence $0 \to \operatorname{Hom}(C, G) \xrightarrow{g^*} \operatorname{Hom}(B, G) \xrightarrow{f^*} \operatorname{Hom}(A, G) \to 0$ need not be exact. (6)What positive statement can be made?
- II. Let X be obtained from the 2-sphere by identifying three points of the equator. Compute the homology groups of X. (Note that X has a cell structure with one 0-cell, three 1-cells, and two 2-cells.) (6)
- III. Let X be a finite CW-complex, and let A and B be subcomplexes of X with $X = A \cup B$. Explain why the (6)Euler characteristic satisfies $\chi(X) = \chi(A) + \chi(B) - \chi(A \cap B)$.
- Let C be a chain complex and let $[\varphi] \in H^n(C; G)$. IV.
- (6)
- (a) Use the fact that φ is a cocycle to show that φ induces a homomorphism $\overline{\varphi|_{Z_n}} : H_n(C) \to G$.
- (b) Show that if φ is a coboundary, then $\overline{\varphi}$ is the zero homomorphism. That is, sending the cohomology class $[\varphi]$ to $\overline{\varphi}$ is a well-defined homomorphism $h: H^n(C; G) \to \operatorname{Hom}(H_n(C), G)$.
- Let H be an abelian group (or more generally an R-module over a ring R). Define a *free resolution* of H. V. Suppose that F and F' are free resolutions of H and H', and $\alpha: H \to H'$ is a homomorphism. Tell what (6)is obtained from α , and how well-defined it is.
- VI. State the Excision Theorem (either of the two forms is sufficient). Use it to calculate $H_n(U, U - x)$, where U is an open subset of \mathbb{R}^n and $x \in U$. (8)
- VII. Construct a surjective map of degree 0 from S^n to S^n .

(4)

VIII. Define the terms category, covariant functor, and contravariant functor. Give an elementary (undergrad-(8)uate) example of a contravariant functor.