Instructions: Insofar as possible, give brief, clear answers. Use major theorems when possible.
I. Let $0 \rightarrow A \stackrel{f}{\rightarrow} B \xrightarrow{g} C \rightarrow 0$ be an exact sequence of abelian groups, and let G be an abelian group. Give an (6) example showing that the sequence $0 \rightarrow \operatorname{Hom}(C, G) \xrightarrow{g^{*}} \operatorname{Hom}(B, G) \xrightarrow{f^{*}} \operatorname{Hom}(A, G) \rightarrow 0$ need not be exact. What positive statement can be made?

Choose $m>1$ and consider $0 \rightarrow \mathbb{Z} \xrightarrow{\alpha} \mathbb{Z} \rightarrow \mathbb{Z} / m \rightarrow 0$, where $\alpha(k)=m k$. Now Hom $(\mathbb{Z}, \mathbb{Z}) \cong \mathbb{Z}$ generated by $\phi: 1 \mapsto 1$, and $\alpha^{*}(\phi): 1 \mapsto m$ so $\alpha^{*}(\phi)=m \phi$. Therefore the sequence $0 \rightarrow \operatorname{Hom}(\mathbb{Z} / m, \mathbb{Z}) \rightarrow$ $\operatorname{Hom}(\mathbb{Z}, \mathbb{Z}) \xrightarrow{\alpha^{*}} \operatorname{Hom}(\mathbb{Z}, \mathbb{Z}) \rightarrow 0$ becomes $0 \rightarrow 0 \rightarrow \mathbb{Z} \xrightarrow{\alpha} \mathbb{Z} \rightarrow 0$, which is not exact.
It is true, however, that $0 \rightarrow \operatorname{Hom}(C, G) \xrightarrow{g^{*}} \operatorname{Hom}(B, G) \xrightarrow{f^{*}} \operatorname{Hom}(A, G)$ is exact. And the Hom sequence is exact if the original exact sequence was split exact.
II. Let X be obtained from the 2 -sphere by identifying three points of the equator. Compute the homology
(6) groups of X. (Note that X has a cell structure with one 0 -cell, three 1-cells, and two 2-cells.)

Form the cellular chain complex

$$
0 \rightarrow \mathbb{Z} \oplus \mathbb{Z} \xrightarrow{\partial_{2}} \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z} \xrightarrow{\partial_{1}} \mathbb{Z} \rightarrow 0
$$

with the obvious bases consisting of the cells. The matrix of ∂_{2} is $\left(\begin{array}{ll}1 & 1 \\ 1 & 1 \\ 1 & 1\end{array}\right)$, which is equivalent to $\left(\begin{array}{ll}1 & 0 \\ 0 & 0 \\ 0 & 0\end{array}\right)$, so $H_{2}(X)=\operatorname{ker}\left(\partial_{2}\right) \cong \mathbb{Z}$. Since there is only one 0 -cell, ∂_{1} is the zero homomorphism, so $H_{1}(X)=\mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z} / \operatorname{im}\left(\partial_{2}\right) \cong \mathbb{Z} \oplus \mathbb{Z}$, and $H_{0}(X)=\mathbb{Z} / \operatorname{im}\left(\partial_{1}\right)=\mathbb{Z}$.
Alternatively, one can put A equal to the subset consisting of the three points and use the fact that $H_{n}\left(S^{2}, A\right) \cong \widetilde{H}_{n}\left(S^{2} / A\right)$. The long exact sequence becomes

$$
H_{2}(A)=0 \rightarrow H_{2}\left(S^{2}\right) \rightarrow H_{2}\left(S^{2} / A\right) \rightarrow H_{1}(A) \rightarrow H_{1}\left(S^{2}\right) \rightarrow H_{1}\left(S^{2} / A\right) \rightarrow \widetilde{H}_{0}(A) \rightarrow 0=\tilde{H}_{0}\left(S^{2}\right)
$$

Since $H_{1}(A)=0$, we have $H_{2}\left(S^{2} / A\right) \cong H_{2}\left(S^{2}\right) \cong \mathbb{Z}$. Since $H_{1}\left(S^{2}\right)=0$, we have $H_{1}\left(S^{2} / A\right) \cong \widetilde{H}_{0}(A) \cong$ $\mathbb{Z} \oplus \mathbb{Z}$, and $H_{0}\left(S^{2} / A\right) \cong \mathbb{Z}$ since S^{2} and hence S^{2} / A is path connected.
III. Let X be a finite CW-complex, and let A and B be subcomplexes of X with $X=A \cup B$. Explain why the
(6) Euler characteristic satisfies $\chi(X)=\chi(A)+\chi(B)-\chi(A \cap B)$.
$\chi(X)$ is the alternating sum $\sum(-1)^{i} x_{i}$, where x_{i} is the number of i-cells of X. Similarly, $\chi(A)=$ $\sum(-1)^{i} a_{i}$ and $\chi(B)=\sum(-1)^{i} b_{i}$. In the sum $\chi(A)+\chi(B)$, all the cells of X are counted with the correct sign for the expression for $\chi(X)$, but the cells in $A \cap B$ are counted twice. Correcting this by subtracting $\chi(A \cap B)$ gives the formula.
IV. Let C be a chain complex and let $[\varphi] \in H^{n}(C ; G)$.
${ }^{(6)}$ (a) Use the fact that φ is a cocycle to show that φ induces a homomorphism $\overline{\left.\varphi\right|_{Z_{n}}}: H_{n}(C) \rightarrow G$.
The cocycle condition $0=\delta_{n} \varphi=\varphi \partial_{n+1}$ says that $0=\varphi\left(\partial_{n+1}\left(C_{n+1}\right)\right)=\varphi\left(B_{n}\right)$, so $\left.\varphi\right|_{Z_{n}}: Z_{n} \rightarrow G$ induces $\overline{\left.\varphi\right|_{Z_{n}}}: Z_{n} / B_{n}=H_{n}(C) \rightarrow G$.
(b) Show that if φ is a coboundary, then $\bar{\varphi}$ is the zero homomorphism. That is, sending the cohomology class $[\varphi]$ to $\bar{\varphi}$ is a well-defined homomorphism $h: H^{n}(C ; G) \rightarrow \operatorname{Hom}\left(H_{n}(C), G\right)$.

If $\varphi=\delta \phi=\phi \circ \partial_{n}$, then $\left.\varphi\right|_{Z_{n}}\left(Z_{n}\right)=\phi \circ \partial_{n}\left(Z_{n}\right)=\phi(0)=0$.
V. Let H be an abelian group (or more generally an R-module over a ring R). Define a free resolution of H. (6) Suppose that F and F^{\prime} are free resolutions of H and H^{\prime}, and $\alpha: H \rightarrow H^{\prime}$ is a homomorphism. Tell what is obtained from α, and how well-defined it is.

A free resolution of H is an exact sequence $\cdots \rightarrow F_{3} \xrightarrow{f_{3}} F_{2} \xrightarrow{f_{2}} F_{1} \xrightarrow{f_{0}} H \rightarrow 0$, where each F_{i} is a free R-module.

From α one can always build a chain map

which is well-defined up to chain homotopy.
VI. State the Excision Theorem (either of the two forms is sufficient). Use it to calculate $H_{n}(U, U-x)$, where
(8) $\quad U$ is an open subset of \mathbb{R}^{n} and $x \in U$.

For the statements, check the text. Given $x \in U$, choose a small closed n-ball B in U with x in the interior of B. Since $\overline{U-B} \subset U-x$, we have by excision that the inclusion $(B, B-x)=$ $(U-U-B, U-x-(U-B)) \rightarrow(U, U-x)$ induces an isomorphism on homology groups. So for each k, we have $H_{k}(U, U-x) \cong H_{k}(B, B-x) \cong H_{k}(B, \partial B)$, since $B-x$ deformation retracts to ∂B. Since all reduced homology groups of B are 0 , the long exact sequence gives an isomorphism $H_{k}(B, \partial B) \cong \widetilde{H}_{k-1}(\partial B) \cong \widetilde{H}_{k-1}\left(S^{n-1}\right)$, which is \mathbb{Z} if $k=n$ and 0 otherwise.
I use the previous argument because it actually works in any manifold. But a nicer way to do this particular case is to take $Z=\mathbb{R}^{n}-U$ and use the excision $(U, U-x) \rightarrow\left(\mathbb{R}^{n}, \mathbb{R}^{n}-x\right)$. Then one has $H_{k}(U, U-x) \cong H_{k}\left(\mathbb{R}^{n}, \mathbb{R}^{n}-x\right) \cong \widetilde{H}_{k-1}\left(\mathbb{R}^{n}-x\right) \cong \widetilde{H}_{k-1}\left(S^{n-1}\right)$ which is \mathbb{Z} if $k=n$ and 0 otherwise.
VII. Construct a surjective map of degree 0 from S^{n} to S^{n}.

Regarding S^{n} as the standard subset in \mathbb{R}^{n+1}, the projection p of S^{n} to the first n coordinates carries S^{n} onto $D^{n} \subset \mathbb{R}^{n}$. Following this by the quotient map $q: D^{n} \rightarrow D^{n} / \partial D^{n}=S^{n}$ defines the surjection $q p: S^{n} \rightarrow S^{n}$. It has degree 0 since $(q p)_{*}$ factors as $H_{n}\left(S^{n}\right) \xrightarrow{p_{*}} H_{n}\left(D^{n}\right) \xrightarrow{q_{*}} H_{n}\left(S^{n}\right)$, and $H_{n}\left(D^{n}\right)=0$.
VIII. Define the terms category, covariant functor, and contravariant functor. Give an elementary (undergraduate) example of a contravariant functor.

A category C consists of a set of objects $\operatorname{Obj}(C)$ and, for each $X, Y \in C$, a set of morphisms $\operatorname{Mor}(X, Y)$, such that $\operatorname{Mor}(X, X)$ contains an identity morphisms ι_{X}. Moreover, for any $X, Y, Z \in C$, there is a composition function $\circ: \operatorname{Mor}(Y, Z) \times \operatorname{Mor}(X, Y) \rightarrow \operatorname{Mor}(X, Z)$ such that for $f \in \operatorname{Mor}(X, Y)$ and $g \in \operatorname{Mor}(Y, Z),(f \circ g) \circ h=f \circ(g \circ h), f \circ \iota_{X}=f$, and $\iota_{Y} \circ f=f$.
A covariant functor $F: C \rightarrow D$ assigns to each object $X \in \operatorname{Obj}(C)$ an object $F(X) \in \operatorname{Obj}(D)$ and to each $f \in \operatorname{Mor}(X, Y)$ a morphism $F(f) \in \operatorname{Mor}(F(X), F(Y))$ such that $F\left(\iota_{X}\right)=\iota_{F(X)}$ and $F(g \circ f)=F(g) \circ F(f)$. A contravariant functor is the same, except that $F(g \circ f)=F(f) \circ F(g)$.
An elementary example of a contravariant functor is taking both categories to be the category of real vector spaces and linear transformations, and putting $F(V)$ equal to the dual space $\operatorname{Hom}(V, \mathbb{R})$ and, for $f \in \operatorname{Hom}(V, W), F(f)$ equal to the dual linear transformation $f^{*}: \operatorname{Hom}(W, \mathbb{R}) \rightarrow \operatorname{Hom}(V, \mathbb{R})$ given by $f^{*}(\phi)=\phi \circ f$.

