Math 3333 homework

22. (4/9) $5.3 \# 11,12$ (where the length of x is defined by $\left.\|x\|=(x, x)^{1 / 2}\right), 15,16$ (expand the left-hand side of the formula using the fact that $\|x\|^{2}=(x, x)$), 19 (first assume that the equality holds and check that $(u, v)=0$, then assume that $(u, v)=0$ and show that equality holds)
23. (4/9) $5.3 \# 20,21,23,30,41$
24. (4/9) $6.1 \# 1,3$ (for 1 and 3, verify that each one is or is not linear), 7, 8, 10 (find $L\left(e_{1}\right)$ and $\left.L\left(e_{2}\right)\right), 12,13$ (the easiest way is to find the standard matrix representation of L and use it to do (a) and (b)), 18, 19
25. (4/19) $6.2 \# 2,3,5,6,10,13(\mathrm{a})(\mathrm{b})$
26. $(4 / 19) 6.3$ \# 1 (it will save a lot of work to first get a general formula for $\left[\begin{array}{l}a \\ b\end{array}\right]_{T}$), 5, $6,13,17$ (it's interesting to note that the representation matrices in (a) and (b) are exactly the change-of-basis matrices found in section 4.8), 18, 19
27. $(4 / 19) 3.1 \# 5,6,8,13,14(\mathrm{a}), 15$
28. (4/19) 3.2 be able to do $1,2,7,24-26$, turn in $\# 3,4,5,8,9,10,25,26$
29. $3.3 \# 1,3,11,12$
30. $3.4 \# 1,2,9,13$ (Suppose there were some A that is singular but its adjoint $\operatorname{adj}(A)$ is nonsingular. From the fact that $A \operatorname{adj}(A)=\operatorname{det}(A) I_{n}=Z_{n, n}$ we would have $A=Z_{n, n}(\operatorname{adj}(A))^{-1}=Z_{n, n}$ and then $(\operatorname{why} ?) \operatorname{adj}(A)=Z_{n, n}$. But then $\operatorname{adj}(A)$ would not have been nonsingular. So it's impossible to have A is singular and $\operatorname{adj}(A)$ nonsingular.), 14
31. Study the analysis of the example $A=\left[\begin{array}{ll}4 & 3 \\ 5 & 4\end{array}\right]$ that we did in class. $7.1 \# 2,5$
32. $7.1 \# 7$, and more from 6 and 8 if needed
33. $7.2 \# 3,4,5,11(\mathrm{a})(\mathrm{b})(\mathrm{d}), 12,13,21$
