Instructions: Give concise answers, but clearly indicate your reasoning. Most of the problems have rather short answers, so if you find yourself involved in a lengthy calculation, it might be a good idea to move on and come back to that problem if you have time.
I. Given that $A^{-1}=\left[\begin{array}{ll}3 & 1 \\ \text { (4) } & 0\end{array}\right]$ and $B^{-1}=\left[\begin{array}{cc}-2 & 1 \\ 0 & 1\end{array}\right]$, find the inverse of $A B$.

$$
(A B)^{-1}=B^{-1} A^{-1}=\left[\begin{array}{cc}
-2 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
3 & 1 \\
2 & 0
\end{array}\right]=\left[\begin{array}{cc}
-4 & -2 \\
2 & 0
\end{array}\right]
$$

II. Use the row operation method to find the inverse of the matrix $\left[\begin{array}{ll}3 & 1 \\ a & 0\end{array}\right]$ when $a \neq 0$ (the expression for the inverse will involve a in some way).

$$
\left[\begin{array}{cccc}
3 & 1 & 1 & 0 \\
a & 0 & 0 & 1
\end{array}\right] \longrightarrow\left[\begin{array}{cccc}
3 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 / a
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
0 & 1 & 1 & -3 / a \\
1 & 0 & 0 & 1 / a
\end{array}\right] \longrightarrow\left[\begin{array}{cccc}
1 & 0 & 0 & 1 / a \\
0 & 1 & 1 & -3 / a
\end{array}\right]
$$

so the inverse is $\left[\begin{array}{cc}0 & 1 / a \\ 1 & -3 / a\end{array}\right]$. (To check, we can compute that $\left[\begin{array}{cc}3 & 1 \\ a & 0\end{array}\right]\left[\begin{array}{ll}0 & 1 / a \\ 1 & -3 / a\end{array}\right]=I_{2}$.)
III. Write a system of linear equations in x and y whose solutions, if any, will satisfy
(4)

$$
\left[\begin{array}{cc}
3 & 1 \\
2 & 0
\end{array}\right]=x\left[\begin{array}{cc}
1 & -1 \\
4 & 0
\end{array}\right]+y\left[\begin{array}{cc}
-1 & 2 \\
3 & 0
\end{array}\right]
$$

but do not solve the system or try to find x and y.

The equation says

$$
\left[\begin{array}{cc}
3 & 1 \\
2 & 0
\end{array}\right]=x\left[\begin{array}{cc}
1 & -1 \\
4 & 0
\end{array}\right]+y\left[\begin{array}{cc}
-1 & 2 \\
3 & 0
\end{array}\right]=\left[\begin{array}{cc}
x-y & -x+2 y \\
4 x+3 y & 0
\end{array}\right]
$$

so a system would be

$$
\begin{aligned}
x-y & =3 \\
-x+2 y & =1 \\
4 x+3 y & =2
\end{aligned}
$$

IV. Write any 3×3 matrix A with the property that (4)

$$
A\left[\begin{array}{l}
0 \\
2 \\
0
\end{array}\right]=\left[\begin{array}{c}
-2 \\
0 \\
4
\end{array}\right]
$$

Multiplying A by $\left[\begin{array}{l}0 \\ 2 \\ 0\end{array}\right]$ gives twice the middle column of A, so any matrix whose middle column is $(1 / 2)\left[\begin{array}{c}-2 \\ 0 \\ 4\end{array}\right]$ will
work, such as $A=\left[\begin{array}{ccc}0 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 2 & 0\end{array}\right]$.
V. Find a condition on a and b which tells whether $\left[\begin{array}{l}a \\ (5) \\ b\end{array}\right]$ is in the range of the matrix transformation

$$
f\left(\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]\right)=\left[\begin{array}{lll}
2 & 2 & 1 \\
4 & 4 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
a \\
b
\end{array}\right]
$$

We investigate when we can solve $\left[\begin{array}{ccc}2 & 2 & 1 \\ 4 & 4 & 2\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}a \\ b\end{array}\right]$. This is the linear system

$$
\begin{aligned}
& 2 x+2 y+z=a \\
& 4 x+4 y+z=b
\end{aligned}
$$

Using Gauss elimination,

$$
\left[\begin{array}{cccc}
2 & 2 & 1 & a \\
4 & 4 & 2 & b
\end{array}\right] \longrightarrow\left[\begin{array}{cccc}
2 & 2 & 1 & a \\
0 & 0 & 0 & b-2 a
\end{array}\right] \longrightarrow\left[\begin{array}{cccc}
1 & 1 & 1 / 2 & a / 2 \\
0 & 0 & 0 & b-2 a
\end{array}\right]
$$

so the condition to have a solution is that $b=2 a$.
VI. Let A be an $m \times n$ matrix and consider a linear system $A X=B$, where X and B are vectors.
(a) What must be the dimensions of X and B, when they are regarded as matrices?
X must be $n \times 1$, and B must be $m \times 1$.
(b) Tell the associated homogeneous system of $A X=B$.

$$
A X=0 .
$$

(c) Suppose that the system has at least one solution X_{P}. Show that if X_{H} is any solution of the associated homogeneous system, then $X_{P}+X_{H}$ is a solution of $A X=B$.

$$
A\left(X_{P}+X_{H}\right)=A X_{P}+A X_{H}=B+0=B
$$

(d) Still assuming that the system has at least one solution X_{P}, show that every solution X of $A X=B$ is of the form $X_{P}+X_{H}$ for some solution X_{H} of the associated homogeneous system. [Hint: start by letting X be any solution. Then, what can you say about $X-X_{P}$?]

Let X be any solution. Then, $A\left(X-X_{P}\right)=A X-A X_{P}=B-B=0$, so $X-X_{P}$ is a solution of the associated homogeneous solution, and $X=X_{P}+\left(X-X_{P}\right)$.
VII. Find two elementary matrices E_{1} and E_{2} so that $E_{2} E_{1} A=I_{3}$, where $A=\left[\begin{array}{ccc}1 & 0 & -3 \\ (6) & 1 & 0 \\ 0 & 0 & -3\end{array}\right]$.

The row operations $R_{1}-R_{3} \rightarrow R_{1}$ and then $R_{3} \rightarrow(-1 / 3) R_{3}$ change A to I_{3}, so

$$
E_{1}=\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], E_{2}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1 / 3
\end{array}\right]
$$

Another possibility is

$$
E_{1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1 / 3
\end{array}\right], E_{2}=\left[\begin{array}{ccc}
1 & 0 & 3 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

VIII. Each of the following matrices is the augmented matrix of a system of linear equations, and is in row echelon (8) form or reduced row echelon form. For each matrix, use back substitution to write a general expression for the solutions of the corresponding linear system.

1. $\left[\begin{array}{llllll}0 & 0 & 1 & 2 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$
x_{1}, x_{2}, x_{4}, and x_{5} are free parameters, and the first line says that $x_{3}=1-2 x_{4}-x_{5}$, so the general solution is $(p, q, 1-2 r-s, r, s)$.
2. $\left[\begin{array}{llll}1 & a & 0 & b \\ 0 & 1 & c & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$ (the answer will involve a, b, and c)
x_{3} is a free parameter, the second equation says that $x_{2}=-c x_{3}$, and the first says that $x_{1}=b-a x_{2}=$ $b-a\left(-c x_{3}\right)=b+a c x_{3}$, so the general solution is $(b+a c r,-c r, r)$.
IX. Give an example of two nonzero singular matrices A and B for which $A+B$ is nonsingular.
(3)

There are many examples, perhaps the simplest is

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]=I_{2} .
$$

X. Say you have $n \times n$ matrices A and B, and $A B$ is nonsingular. Show that A must also be nonsingular. (That (5) is, you can't multiply two singular matrices and get a nonsingular one.) (If you know about determinants, don't use them here. The solution must only use ideas that we have already studied.)

Say you have $A B$ nonsingular, so there is a C with $A B C=I$. This says that $A(B C)=I$, so $B C$ would be the inverse of A, that is, A must also be nonsingular.

