I. Write a system of linear equations in x and y whose solutions, if any, will satisfy

$$
\left[\begin{array}{cc}
1 & 3 \tag{4}\\
-2 & 0
\end{array}\right]=x\left[\begin{array}{cc}
-1 & 2 \\
3 & 0
\end{array}\right]+y\left[\begin{array}{cc}
1 & 3 \\
-4 & 0
\end{array}\right]
$$

but do not solve the system or try to find x and y.
II. Write any 3×3 matrix A with the property that
(4)

$$
A\left[\begin{array}{l}
0 \\
0 \\
2
\end{array}\right]=\left[\begin{array}{c}
6 \\
-2 \\
0
\end{array}\right]
$$

III. Given that $A^{-1}=\left[\begin{array}{cc}-2 & 1 \\ 0 & 1\end{array}\right]$ and $B^{-1}=\left[\begin{array}{cc}2 & -1 \\ 0 & 3\end{array}\right]$, find the inverse of $A B$.
IV. Use the row operation method to find the inverse of the matrix $\left[\begin{array}{ll}4 & 1 \\ b & 0\end{array}\right]$ when $b \neq 0$ (the expression for the inverse will involve b in some way).
V. Each of the following matrices is the augmented matrix of a system of linear equations, and is in row echelon (8) form or reduced row echelon form. For each matrix, use back substitution to write a general expression for the solutions of the corresponding linear system.

1. $\left[\begin{array}{llllll}0 & 0 & 1 & 1 & 2 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$
2. $\left[\begin{array}{llll}1 & a & 0 & c \\ 0 & 1 & b & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$ (the answer will involve a, b, and c)
VI. Find two elementary matrices E_{1} and E_{2} so that $E_{2} E_{1} A=I_{3}$, where $A=\left[\begin{array}{ccc}-2 & 0 & 0 \\ 0 & 1 & 0 \\ -2 & 0 & 1\end{array}\right]$.
VII. Find a condition on a and b which tells whether $\left[\begin{array}{l}a \\ (5) \\ b\end{array}\right]$ is in the range of the matrix transformation

$$
f\left(\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]\right)=\left[\begin{array}{ccc}
3 & 3 & 1 \\
-6 & -6 & -2
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
a \\
b
\end{array}\right] .
$$

VIII. Let A be an $m \times n$ matrix and consider a linear system $A X=B$, where X and B are vectors. (9)
(a) What must be the dimensions of X and B, when they are regarded as matrices?
(b) Tell the associated homogeneous system of $A X=B$.
(c) Suppose that the system has at least one solution X_{P}. Show that if X_{H} is any solution of the associated homogeneous system, then $X_{P}+X_{H}$ is a solution of $A X=B$.
(d) Still assuming that the system has at least one solution X_{P}, show that every solution X of $A X=B$ is of the form $X_{P}+X_{H}$ for some solution X_{H} of the associated homogeneous system. [Hint: start by letting X be any solution. Then, what can you say about $X-X_{P}$?]
IX. Give an example of two nonzero singular matrices A and B for which $A+B$ is nonsingular.
X. Say you have $n \times n$ matrices A and B, and $A B$ is nonsingular. Show that A must also be nonsingular. (That
(5) is, you can't multiply two singular matrices and get a nonsingular one.) (If you know about determinants, don't use them here. The solution must only use ideas that we have already studied.)

