Instructions: Give concise answers, but clearly indicate your reasoning. Most of the problems have rather short answers, so if you find yourself involved in a lengthy calculation, it might be a good idea to move on and come back to that problem if you have time.
I. Write a system of linear equations in x and y whose solutions, if any, will satisfy

$$
\left[\begin{array}{cc}
1 & 3 \tag{4}\\
-2 & 0
\end{array}\right]=x\left[\begin{array}{cc}
-1 & 2 \\
3 & 0
\end{array}\right]+y\left[\begin{array}{cc}
1 & 3 \\
-4 & 0
\end{array}\right]
$$

but do not solve the system or try to find x and y.
The equation says

$$
\left[\begin{array}{cc}
1 & 3 \\
-2 & 0
\end{array}\right]=x\left[\begin{array}{cc}
-1 & 2 \\
3 & 0
\end{array}\right]+y\left[\begin{array}{cc}
1 & 3 \\
-4 & 0
\end{array}\right]=\left[\begin{array}{cc}
-x+y & 2 x+3 y \\
3 x-4 y & 0
\end{array}\right]
$$

so a system would be

$$
\begin{aligned}
-x+y & =1 \\
2 x+3 y & =3 \\
3 x-4 y & =-2
\end{aligned}
$$

II. Write any 3×3 matrix A with the property that

$$
A\left[\begin{array}{l}
0 \tag{4}\\
0 \\
2
\end{array}\right]=\left[\begin{array}{c}
6 \\
-2 \\
0
\end{array}\right]
$$

Multiplying A by $\left[\begin{array}{l}0 \\ 0 \\ 2\end{array}\right]$ gives twice the third column of A, so any matrix whose third column is $(1 / 2)\left[\begin{array}{c}6 \\ -2 \\ 0\end{array}\right]$ will
work, such as $A=\left[\begin{array}{ccc}0 & 0 & 3 \\ 0 & 0 & -1 \\ 0 & 0 & 0\end{array}\right]$.
III. Given that $A^{-1}=\left[\begin{array}{cc}-2 & 1 \\ 0 & 1\end{array}\right]$ and $B^{-1}=\left[\begin{array}{cc}2 & -1 \\ 0 & 3\end{array}\right]$, find the inverse of $A B$.

$$
(A B)^{-1}=B^{-1} A^{-1}=\left[\begin{array}{cc}
2 & -1 \\
0 & 3
\end{array}\right]\left[\begin{array}{cc}
-2 & 1 \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
-4 & 1 \\
0 & 3
\end{array}\right]
$$

IV. Use the row operation method to find the inverse of the matrix $\left[\begin{array}{ll}4 & 1 \\ b & 0\end{array}\right]$ when $b \neq 0$ (the expression for the inverse will involve b in some way).

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
4 & 1 & 1 & 0 \\
b & 0 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
4 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 / b
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
0 & 1 & 1 & -4 / b \\
1 & 0 & 0 & 1 / b
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 0 & 0 & 1 / b \\
0 & 1 & 1 & -4 / b
\end{array}\right]} \\
& \text { so the inverse is }\left[\begin{array}{cc}
0 & 1 / b \\
1 & -4 / b
\end{array}\right] \text {. (To check, we can compute that }\left[\begin{array}{ll}
4 & 1 \\
b & 0
\end{array}\right]\left[\begin{array}{cc}
0 & 1 / b \\
1 & -4 / b
\end{array}\right]=I_{2} \text {.) }
\end{aligned}
$$

V. Each of the following matrices is the augmented matrix of a system of linear equations, and is in row echelon (8) form or reduced row echelon form. For each matrix, use back substitution to write a general expression for the solutions of the corresponding linear system.

1. $\left[\begin{array}{llllll}0 & 0 & 1 & 1 & 2 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$
x_{1}, x_{2}, x_{4}, and x_{5} are free parameters, and the first line says that $x_{3}=1-x_{4}-2 x_{5}$, so the general solution is $(p, q, 1-r-2 s, r, s)$.
2. $\left[\begin{array}{llll}1 & a & 0 & c \\ 0 & 1 & b & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$ (the answer will involve a, b, and c)
x_{3} is a free parameter, the second equation says that $x_{2}=-b x_{3}$, and the first says that $x_{1}=c-a x_{2}=$ $c-a\left(-b x_{3}\right)=c+a b x_{3}$, so the general solution is $(c+a b r,-b r, r)$.
VI. Find two elementary matrices E_{1} and E_{2} so that $E_{2} E_{1} A=I_{3}$, where $A=\left[\begin{array}{ccc}-2 & 0 & 0 \\ 0 & 1 & 0 \\ -2 & 0 & 1\end{array}\right]$.

The row operations $R_{3}-R_{1} \rightarrow R_{3}$ and then $R_{1} \rightarrow(-1 / 2) R_{1}$ change A to I_{3}, so

$$
E_{1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right], E_{2}=\left[\begin{array}{ccc}
-1 / 2 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Another possibility is

$$
E_{1}=\left[\begin{array}{ccc}
-1 / 2 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], E_{2}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
2 & 0 & 1
\end{array}\right]
$$

VII. Find a condition on a and b which tells whether $\left[\begin{array}{l}a \\ \text { (5) } \\ b\end{array}\right]$ is in the range of the matrix transformation

$$
f\left(\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]\right)=\left[\begin{array}{ccc}
3 & 3 & 1 \\
-6 & -6 & -2
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
a \\
b
\end{array}\right] .
$$

$$
\begin{aligned}
& \text { We investigate when we can solve } \begin{aligned}
{\left[\begin{array}{ccc}
3 & 3 & 1 \\
-6 & -6 & -2
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] } & =\left[\begin{array}{l}
a \\
b
\end{array}\right] . \text { This is the linear system } \\
3 x+3 y+z & =a \\
-6 x-6 y-2 z & =b .
\end{aligned}
\end{aligned}
$$

Using Gauss elimination,

$$
\left[\begin{array}{cccc}
3 & 3 & 1 & a \\
-6 & -6 & -2 & b
\end{array}\right] \longrightarrow\left[\begin{array}{cccc}
3 & 3 & 1 & a \\
0 & 0 & 0 & b+2 a
\end{array}\right] \longrightarrow\left[\begin{array}{cccc}
1 & 1 & 1 / 3 & a / 3 \\
0 & 0 & 0 & b+2 a
\end{array}\right]
$$

so the condition to have a solution is that $b=-2 a$.
VIII. Let A be an $m \times n$ matrix and consider a linear system $A X=B$, where X and B are vectors. (9)
(a) What must be the dimensions of X and B, when they are regarded as matrices?
X must be $n \times 1$, and B must be $m \times 1$.
(b) Tell the associated homogeneous system of $A X=B$.

$$
A X=0
$$

(c) Suppose that the system has at least one solution X_{P}. Show that if X_{H} is any solution of the associated homogeneous system, then $X_{P}+X_{H}$ is a solution of $A X=B$.

$$
A\left(X_{P}+X_{H}\right)=A X_{P}+A X_{H}=B+0=B
$$

(d) Still assuming that the system has at least one solution X_{P}, show that every solution X of $A X=B$ is of the form $X_{P}+X_{H}$ for some solution X_{H} of the associated homogeneous system. [Hint: start by letting X be any solution. Then, what can you say about $X-X_{P}$?]

Let X be any solution. Then, $A\left(X-X_{P}\right)=A X-A X_{P}=B-B=0$, so $X-X_{P}$ is a solution of the associated homogeneous solution, and $X=X_{P}+\left(X-X_{P}\right)$.
IX. Give an example of two nonzero singular matrices A and B for which $A+B$ is nonsingular.
(3)

There are many examples, perhaps the simplest is

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]=I_{2} .
$$

X. Say you have $n \times n$ matrices A and B, and $A B$ is nonsingular. Show that A must also be nonsingular. (That
(5) is, you can't multiply two singular matrices and get a nonsingular one.) (If you know about determinants, don't use them here. The solution must only use ideas that we have already studied.)

Say you have $A B$ nonsingular, so there is a C with $A B C=I$. This says that $A(B C)=I$, so $B C$ would be the inverse of A, that is, A must also be nonsingular.

