Instructions: Give concise answers, but clearly indicate your reasoning. Most of the problems have rather short answers, so if you find yourself involved in a lengthy calculation, it might be a good idea to move on and come back to that problem if you have time.
I. Consider the vector space $V=\{(x, y, z) \mid x, y, z$ are in $\mathbb{R}\}$ with the operations $(x, y, z) \oplus\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=$ (8) $\quad\left(x+x^{\prime}, y+y^{\prime}, z+z^{\prime}\right)$ and $\lambda \odot(x, y, z)=(x, 1, z)$.
(a) Verify that V satisfies the vector space axiom $\lambda \odot(\mu \odot v)=(\lambda \mu) \odot v$. [Hint: write v as (x, y, z).]
(b) Tell one of the eight vector space axioms that V fails to satisfy, and verify that V fails to satisfy it.
II. The regions A, B, and C in this diagram repre-
(5) sent some of the finite subsets of the finite subsets of a vector space V, specifically those which either span, or are linearly independent, or both. The number of elements in the subsets is indicated by the numbers to the left, $0,1,2, \ldots$, $\operatorname{dim}(V)-1, \operatorname{dim}(V), \operatorname{dim}(V)+1, \ldots$ and so on. For each of the following, tell which region or regions comprise the subsets that:
(a) are linearly independent
(b) span
(c) are bases

III. Using the definition of linear independence, verify that the set $\left\{\left[\begin{array}{l}2 \\ \text { (5) }\end{array}\right]\left[\begin{array}{l}-2 \\ 3\end{array}\right]\right\}$ is linearly independent.
IV. Define what it means to say that a subset $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ of a vector space V is a basis. Define the (4) dimension of V.
V. The regions A, B, and C in this diagram repre(6) sents all of the finite subsets of a vector space V. The number of elements in the subsets is indicated by the numbers to the left, $0,1,2, \ldots$, $\operatorname{dim}(V)-1, \operatorname{dim}(V), \operatorname{dim}(V)+1, \ldots$ and so on. For each of the following, tell which region or regions comprise the subsets that:
(a) might span
(b) cannot span
(c) might be linearly independent
(d) cannot be linearly independent

VI. Recall that if $\left\{v_{1}, \ldots, v_{k}\right\}$ is a subset of a vector space V, then the span of $\left\{v_{1}, \ldots, v_{k}\right\}$ is $\operatorname{span}\left(\left\{v_{1}, \ldots, v_{k}\right\}\right)=$ (5) $\quad\left\{\lambda_{1} v_{1}+\cdots+\lambda_{k} v_{k} \mid\right.$ the λ_{i} are numbers. $\}$. Verify that $\operatorname{span}\left(\left\{v_{1}, \ldots, v_{k}\right\}\right)$ is closed under addition and scalar multiplication.
VII. Find a basis for and the dimension of the solution space of this homogeneous system:
(8)

$$
\left[\begin{array}{ccccc}
1 & 3 & 0 & 0 & -5 \\
0 & 0 & 0 & 1 & -5
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

VIII. Find a basis for the row space of the matrix $\left[\begin{array}{ccc}3 & 0 & 1 \\ 3 & -3 & 3 \\ -2 & -1 & 0 \\ 1 & -1 & 1\end{array}\right]$.
IX. (a) The rank of a certain 5×4 matrix A is 2 . What is the dimension of the solution space of the homogeneous (8) linear system $A X=0$? Why?
(b) A certain matrix B is the coefficient matrix of a homogeneous linear system of five equations. If the dimension of the solution space of the homogeneous linear system $B X=0$ is 5 , and the dimension of the column space of B is 3 , how many variables does the linear system have? Why?

