Instructions: Give concise answers, but clearly indicate your reasoning. Most of the problems have rather short answers, so if you find yourself involved in a lengthy calculation, it might be a good idea to move on and come back to that problem if you have time.
I. Consider the vector space $V=\{(x, y, z) \mid x, y, z$ are in $\mathbb{R}\}$ with the operations $(x, y, z) \oplus\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=$ (8) $\quad\left(x+x^{\prime}, y+y^{\prime}, z+z^{\prime}\right)$ and $\lambda \odot(x, y, z)=(x, 1, z)$.
(a) Verify that V satisfies the vector space axiom $\lambda \odot(\mu \odot v)=(\lambda \mu) \odot v$. [Hint: write v as (x, y, z).]

For any numbers λ and μ, and any (x, y, z) in V,

$$
\lambda \odot(\mu \odot(x, y, z))=\lambda \odot(x, 1, z)=(x, 1, z)
$$

and

$$
(\lambda \mu) \odot(x, y, z)=(x, 1, z)
$$

(b) Tell one of the eight vector space axioms that V fails to satisfy, and verify that V fails to satisfy it.

Possible choices are
$c \odot(v \oplus w)=(c \odot v) \oplus(c \odot w)$ [sample counterexample: $1 \odot((1,1,1) \oplus(1,1,1))=1 \odot(2,2,2)=(2,1,2)$ but $(1 \odot(1,1,1)) \oplus(1 \odot(1,1,1))=(1,1,1) \oplus(1,1,1)=(2,2,2)]$,
$(c+d) \odot u=(c \odot u) \oplus(d \odot u)$ [sample counterexample: $(1+1) \odot(1,1,1)=2 \odot(1,1,1)=(1,1,1)$ but $(1 \odot(1,1,1)) \oplus(1 \odot(1,1,1))=(1,1,1)+(1,1,1)=(2,2,2)]$
$1 \odot u=u$ [sample counterexample: $1 \odot(2,2,2)=(2,1,2) \neq(2,2,2)$]
II. The regions A, B, and C in this diagram repre-
(5) sent some of the finite subsets of the finite subsets of a vector space V, specifically those which either span, or are linearly independent, or both. The number of elements in the subsets is indicated by the numbers to the left, $0,1,2, \ldots$, $\operatorname{dim}(V)-1, \operatorname{dim}(V), \operatorname{dim}(V)+1, \ldots$ and so on. For each of the following, tell which region or regions comprise the subsets that:
(a) are linearly independent $[B$ and $C]$
(b) $\operatorname{span}[A$ and $B]$
(c) are bases $[B]$

III. Using the definition of linear independence, verify that the set $\left\{\left[\begin{array}{l}2 \\ \text { (5) }\end{array}\right]\left[\begin{array}{l}-2 \\ 3\end{array}\right]\right\}$ is linearly independent.

Suppose that

$$
\left[\begin{array}{l}
0 \\
0
\end{array}\right]=\lambda_{1}\left[\begin{array}{l}
2 \\
3
\end{array}\right]+\lambda_{2}\left[\begin{array}{l}
-2 \\
3
\end{array}\right]=\left[\begin{array}{l}
2 \lambda_{1}-2 \lambda_{2} \\
3 \lambda_{1}+3 \lambda_{2}
\end{array}\right]
$$

Solving this linear system by Gauss-Jordan elimination gives

$$
\left[\begin{array}{ccc}
2 & -2 & 0 \\
3 & 3 & 0
\end{array}\right] \longrightarrow\left[\begin{array}{ccc}
1 & -1 & 0 \\
3 & 3 & 0
\end{array}\right] \longrightarrow\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & 6 & 0
\end{array}\right] \longrightarrow\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & 0
\end{array}\right] \longrightarrow\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]
$$

so the only solution is $\lambda_{1}=\lambda_{2}=0$.
IV. Define what it means to say that a subset $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ of a vector space V is a basis. Define the (4) dimension of V.

To say that the subset $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is a basis means that it spans V and is linearly independent. The dimension of V is the number of elements in a basis.
V. The regions A, B, and C in this diagram repre(6) sents all of the finite subsets of a vector space V. The number of elements in the subsets is indicated by the numbers to the left, $0,1,2, \ldots$, $\operatorname{dim}(V)-1, \operatorname{dim}(V), \operatorname{dim}(V)+1, \ldots$ and so on. For each of the following, tell which region or regions comprise the subsets that:
(a) might span $[A$ and $B]$
(b) cannot span $[C]$
(c) might be linearly independent $[B$ and $C]$
(d) cannot be linearly independent $[A]$

VI. Recall that if $\left\{v_{1}, \ldots, v_{k}\right\}$ is a subset of a vector space V, then the span of $\left\{v_{1}, \ldots, v_{k}\right\}$ is $\operatorname{span}\left(\left\{v_{1}, \ldots, v_{k}\right\}\right)=$ $\left\{\lambda_{1} v_{1}+\cdots+\lambda_{k} v_{k} \mid\right.$ the λ_{i} are numbers. $\}$. Verify that $\operatorname{span}\left(\left\{v_{1}, \ldots, v_{k}\right\}\right)$ is closed under addition and scalar multiplication.

Take any $\lambda_{1} v_{1}+\cdots+\lambda_{k} v_{k}$ and $\mu_{1} v_{1}+\cdots+\mu_{k} v_{k}$ in $\operatorname{span}\left(\left\{v_{1}, \ldots, v_{k}\right\}\right)$. Adding these gives $\left(\lambda_{1}+\mu_{1}\right) v_{1}+$ $\cdots+\left(\lambda_{k}+\mu_{k}\right) v_{k}$, which is also in $\operatorname{span}\left(\left\{v_{1}, \ldots, v_{k}\right\}\right)$. Also, for any number $\lambda, \lambda\left(\lambda_{1} v_{1}+\cdots+\lambda_{k} v_{k}\right)=$ $\left(\lambda \lambda_{1}\right) v_{1}+\cdots+\left(\lambda \lambda_{k}\right) v_{k}$, which is again in $\operatorname{span}\left(\left\{v_{1}, \ldots, v_{k}\right\}\right)$.
VII. Find a basis for and the dimension of the solution space of this homogeneous system:
(8)

$$
\left[\begin{array}{ccccc}
1 & 3 & 0 & 0 & -5 \\
0 & 0 & 0 & 1 & -5
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Using back substitution to write down the solutions, the free parameters correspond to $x_{2}=a, x_{3}=b$, and $x_{5}=c$, and we have $x_{4}=5 x_{5}=5 c$ and $x_{1}=-3 x_{2}+5 x_{5}=-3 a+5 c$, so the general solution is

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{c}
-3 a+5 c \\
a \\
b \\
5 c \\
c
\end{array}\right] .
$$

By the usual method of putting one parameter equal to 1 and the others 0 , we obtain the basis

$$
\left\{\left[\begin{array}{c}
-3 \\
1 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
5 \\
0 \\
0 \\
5 \\
1
\end{array}\right]\right\} .
$$

The dimension of the solution space is 3 .
VIII. Find a basis for the row space of the matrix (6)

$$
\left[\begin{array}{ccc}
3 & 0 & 1 \\
3 & -3 & 3 \\
-2 & -1 & 0 \\
1 & -1 & 1
\end{array}\right]
$$

Putting it in row echelon form, we have

$$
\left[\begin{array}{ccc}
3 & 0 & 1 \\
3 & -3 & 3 \\
-2 & -1 & 0 \\
1 & -1 & 1
\end{array}\right] \longrightarrow\left[\begin{array}{ccc}
0 & 3 & -2 \\
0 & 0 & 0 \\
0 & -3 & 2 \\
1 & -1 & 1
\end{array}\right] \longrightarrow\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & -2 / 3 \\
1 & -1 & 1
\end{array}\right] \longrightarrow\left[\begin{array}{ccc}
1 & 0 & 1 / 3 \\
0 & 1 & -2 / 3 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

So a basis for the row space is $\left\{\left[\begin{array}{lll}1 & 0 & 1 / 3\end{array}\right],\left[\begin{array}{lll}0 & 1 & -2 / 3\end{array}\right]\right\}$.
IX. (a) The rank of a certain 5×4 matrix A is 2 . What is the dimension of the solution space of the homogeneous linear system $A X=0$? Why?

The dimension of the solution space is 2 . Since A is 5×4, the number of variables is $n=4$. The rank is given as 2 , so the nullity must be $4-2=2$. That is, the dimension of the solution space of the homogeneous linear system $A X=0$ is 2 .
(b) A certain matrix B is the coefficient matrix of a homogeneous linear system of five equations. If the dimension of the solution space of the homogeneous linear system $B X=0$ is 5 , and the dimension of the column space of B is 3 , how many variables does the linear system have? Why?

There are eight variables. The dimensions of B are $5 \times n$, where n is the number of variables. The nullity of B is 5 . The rank of B is the same as the dimension of the column space, which is 3 . Since n is the rank plus the nullity, there must be eight variables.

