April 28, 2010
Instructions: Give concise answers, but clearly indicate your reasoning. Most of the problems have rather short answers, so if you find yourself involved in a lengthy calculation, it might be a good idea to move on and come back to that problem if you have time.
I. Let A be the matrix
(6)

$$
\left[\begin{array}{cccc}
t & -2 & 0 & -3 \\
0 & 1 & 1 & 2 \\
0 & t & 0 & 2 \\
-t & 0 & 3 & 4
\end{array}\right]
$$

(a) Calculate $\operatorname{det}(A)$ as follows. First do an elementary row operation to make the $(4,1)$-entry equal to 0 , then do cofactor expansion down the first column to reduce to computing the determinant of a 3×3 matrix. On that 3×3 matrix, do an elementary row operation that creates a second 0 in the middle column, and continue from there.

Performing $R_{4}+R_{1} \rightarrow R_{4}$, we obtain the matrix

$$
\left[\begin{array}{cccc}
t & -2 & 0 & -3 \\
0 & 1 & 1 & 2 \\
0 & t & 0 & 2 \\
0 & -2 & 3 & 1
\end{array}\right]
$$

Now expand down the first column, and continue:

$$
\left|\begin{array}{cccc}
t & -2 & 0 & -3 \\
0 & 1 & 1 & 2 \\
0 & t & 0 & 2 \\
0 & -2 & 3 & 1
\end{array}\right|=t\left|\begin{array}{ccc}
1 & 1 & 2 \\
t & 0 & 2 \\
-2 & 3 & 1
\end{array}\right|=t\left|\begin{array}{ccc}
1 & 1 & 2 \\
t & 0 & 2 \\
-5 & 0 & -5
\end{array}\right|=-t\left|\begin{array}{cc}
t & 2 \\
-5 & -5
\end{array}\right|=-t(-5 t+10)=5 t^{2}-10 t
$$

(b) Using your expression for $\operatorname{det}(A)$, find the values of t for which A is singular.

Solving $0=\operatorname{det}(A)=5 t^{2}-10 t=5 t(t-2)$ gives the values $t=0$ and $t=2$.
II. Let $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the linear transformation defined by

$$
L\left(\left[\begin{array}{l}
a \tag{10}\\
b \\
c
\end{array}\right]\right)=\left[\begin{array}{c}
a+b-c \\
2 b+c \\
-2 a+3 c
\end{array}\right]
$$

(You do not need to verify that L is linear.) As you know, the standard matrix representation of L is

$$
A=\left[\begin{array}{ccc}
1 & 1 & -1 \\
0 & 2 & 1 \\
-2 & 0 & 3
\end{array}\right]
$$

(a) Use the standard matrix representation to find a basis for the kernel of L.

The kernel is the null space of A, that is, the space of solutions of $A X=0$. We find it using elementary row operations:

$$
A \rightarrow\left[\begin{array}{ccc}
1 & 1 & -1 \\
0 & 2 & 1 \\
0 & 2 & 1
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & 0 & -3 / 2 \\
0 & 1 & 1 / 2 \\
0 & 0 & 0
\end{array}\right]
$$

so the null space is $\left[\begin{array}{c}3 r / 2 \\ -r / 2 \\ r\end{array}\right]$ and possible bases include $\left\{\left[\begin{array}{c}3 / 2 \\ -1 / 2 \\ 1\end{array}\right]\right\}$ or $\left\{\left[\begin{array}{c}3 \\ -1 \\ 2\end{array}\right]\right\}$.
(b) Use the standard matrix representation to find a basis for the range of L.

The range of L is the column space of A, which we find using elementary column operations:

$$
A \rightarrow\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 2 & 1 \\
-2 & 2 & 1
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
-2 & 1 & 0
\end{array}\right]
$$

and a basis is $\left\{\left[\begin{array}{c}1 \\ 0 \\ -2\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]\right\}$
III. Let P be a nonsingular $n \times n$ matrix.
(6)
(a) Verify that $\operatorname{det}\left(P^{-1}\right)=1 / \operatorname{det}(P)$.

We have $1=\operatorname{det}\left(I_{n}\right)=\operatorname{det}\left(P P^{-1}\right)=\operatorname{det}(P) \operatorname{det}\left(P^{-1}\right)$, so $\operatorname{det}\left(P^{-1}\right)=1 / \operatorname{det}(P)$.
(b) Use part (a) to verify that if A is any $n \times n$ matrix, then $\operatorname{det}\left(P^{-1} A P\right)=\operatorname{det}(A)$.

$$
\operatorname{det}\left(P^{-1} A P\right)=\operatorname{det}\left(P^{-1}\right) \operatorname{det}(A) \operatorname{det}(P)=(1 / \operatorname{det}(P)) \operatorname{det}(A) \operatorname{det}(P)=\operatorname{det}(A)
$$

IV. Let P_{2} be the space of polynomials of degree at most 2 , and let S be the ordered basis $\left\{t^{2}-t+1, t-1, t^{2}+1\right\}$ (10) of P_{2}.
(a) If the S-coordinate vector of the polynomial p is $p_{S}=\left[\begin{array}{c}-1 \\ 2 \\ 1\end{array}\right]$, find p. $p=-\left(t^{2}-t+1\right)+2(t-1)+\left(t^{2}+1\right)=3 t-2$.
(b) Find the S-coordinate vector of the polynomial $3 t^{2}-2 t+4$.

We solve

$$
\begin{gathered}
3 t^{2}-2 t+4=a\left(t^{2}-t+1\right)+b(t-1)+c\left(t^{2}+1\right)=(a+c) t^{2}+(-a+b) t+(a-b+c) \\
{\left[\begin{array}{cccc}
1 & 0 & 1 & 3 \\
-1 & 1 & 0 & -2 \\
1 & -1 & 1 & 4
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 0 & 1 & 3 \\
0 & 1 & 1 & 1 \\
0 & -1 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 0 & 1 & 3 \\
0 & 0 & 1 & 2 \\
0 & 1 & 0 & -1
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 2
\end{array}\right]}
\end{gathered}
$$

so $(a, b, c)=(1,-1,2)$ and $\left(t^{2}+t-1\right)_{S}=\left[\begin{array}{c}1 \\ -1 \\ 2\end{array}\right]$.
Check: $\left(t^{2}-t+1\right)-(t-1)+2\left(t^{2}+1\right)=3 t^{2}-2 t+4$.
(c) Let T be the basis $\left\{t^{2}, t, 1\right\}$ of P_{2}. Find the transition matrix (also called the change-of-basis matrix) $P_{T \leftarrow S}$ from S-coordinates to T-coordinates.

The columns of $P_{T \leftarrow S}$ are $\left(t^{2}-t+1\right)_{T},(t-1)_{T}$, and $\left(t^{2}+1\right)_{T}$, so

$$
P_{T \leftarrow S}=\left[\begin{array}{ccc}
1 & 0 & 1 \\
-1 & 1 & 0 \\
1 & -1 & 1
\end{array}\right]
$$

V. (a) Let A be an $n \times m$ matrix, and let $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be the matrix transformation defined by $L(v)=A v$.
(8) Verify that L is linear.
$L(a v+b w)=A(a v+b w)=A(a v)+A(b w)=a A v+b A w=a L(v)+b L(w)$.
(b) Let P_{3} be the space of polynomials of degree at most 3 , and let $L: P_{3} \rightarrow P_{3}$ be the function defined by $L(p(t))=p(t)+t$. By giving a specific counterexample, show that L is not linear.
$L(t+t)=t+t+t=3 t$, but $L(t)+L(t)=(t+t)+(t+t)=4 t$.
VI. Let $A=\left(\left[a_{i, j}\right]\right)$ be a 4×4 matrix, and consider the formula

$$
\begin{equation*}
\operatorname{det}(A)=\sum(\pm) a_{1, \sigma(1)} a_{2, \sigma(2)} a_{3, \sigma(3)} a_{4, \sigma(4)} \tag{4}
\end{equation*}
$$

Determine the sign (i. e. tell whether the term has a plus or a minus sign in the formula) of the term that contains $a_{1,2} a_{2,4} a_{3,3} a_{4,1}$ (make your reasoning clear- answers of "plus" or "minus" without a correct explanation won't receive any credit).

The permutation 2431 has $1+2+1=4$ inversions, so is even, so the term that contains $a_{1,2} a_{2,4} a_{3,3} a_{4,1}$ has a plus sign.
VII. Let V be a vector space of dimension 3 , and let $T=\left\{t_{1}, t_{2}, t_{3}\right\}$ be an ordered basis of V. Let $L: V \rightarrow V$ be the linear transformation whose matrix representation with respect to T-coordinates on the domain and the codomain is $A=\left[\begin{array}{ccc}0 & -2 & 1 \\ 1 & 2 & 1 \\ 0 & 2 & 0\end{array}\right]$. Write $L\left(t_{1}+t_{2}-2 t_{3}\right)$ as a linear combination of t_{1}, t_{2}, and t_{3}.

$$
\left(L\left(t_{1}+t_{2}-2 t_{3}\right)\right)_{T}=A\left(t_{1}+t_{2}-2 t_{3}\right)_{T}=A\left[\begin{array}{c}
1 \\
1 \\
-2
\end{array}\right]=\left[\begin{array}{c}
-4 \\
1 \\
2
\end{array}\right] \text {, so } L\left(t_{1}+t_{2}-2 t_{3}\right)=-4 t_{1}+t_{2}+2 t_{3}
$$

VIII. An $n \times n$ matrix B is obtained from a matrix $A=\left[a_{i, j}\right]$ by the elementary row operation $k R_{i} \rightarrow R_{i}$. Use the formula for $\operatorname{det}(A)$ to explain why $\operatorname{det}(B)=k \operatorname{det}(A)$.

The formula for the determinant gives

$$
\begin{gathered}
\operatorname{det}(B)=\sum(\pm) a_{1, \sigma(1)} a_{2, \sigma(2)} \cdots\left(k a_{i, \sigma(i)}\right) \cdots a_{n, \sigma(n)}=\sum(\pm) k a_{1, \sigma(1)} a_{2, \sigma(2)} \cdots a_{i, \sigma(i)} \cdots a_{n, \sigma(n)} \\
=k \sum(\pm) a_{1, \sigma(1)} a_{2, \sigma(2)} \cdots a_{i, \sigma(i)} \cdots a_{n, \sigma(n)}=k \operatorname{det}(A)
\end{gathered}
$$

