Mathematics 3333-002 Examination III Form B

April 28, 2010

Instructions: Give concise answers, but clearly indicate your reasoning. Most of the problems have rather short answers, so if you find yourself involved in a lengthy calculation, it might be a good idea to move on and come back to that problem if you have time.

$$\mathbf{I}. \qquad \text{Let } A \text{ be the matrix}$$

(6)

$\int t$	-2	0	3	
0	3	1	2	
0	t	0	2	
$\lfloor t$	0	3	4	

- (a) Calculate det(A) as follows. First do an elementary row operation to make the (4, 1)-entry equal to 0, then do cofactor expansion down the first column to reduce to computing the determinant of a 3×3 matrix. On that 3×3 matrix, do an elementary row operation that creates a second 0 in the middle column, and continue from there.
- (b) Using your expression for det(A), find the values of t for which A is singular.
- **II**. Let $L: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation defined by (10)

$$L\left(\begin{bmatrix}a\\b\\c\end{bmatrix}\right) = \begin{bmatrix}a+2b\\a-b-c\\3a-2c\end{bmatrix}.$$

(You do not need to verify that L is linear.) As you know, the standard matrix representation of L is

 $A = \begin{bmatrix} 1 & 2 & 0 \\ 1 & -1 & -1 \\ 3 & 0 & -2 \end{bmatrix}.$

- (a) Use the standard matrix representation to find a basis for the kernel of L.
- (b) Use the standard matrix representation to find a basis for the range of L.
- III. (a) Let A be an $n \times m$ matrix, and let $L: \mathbb{R}^n \to \mathbb{R}^m$ be the matrix transformation defined by L(v) = Av. (8) Verify that L is linear.
 - (b) Let P_3 be the space of polynomials of degree at most 3, and let $L: P_3 \to P_3$ be the function defined by L(p(t)) = p(t) + t. By giving a specific counterexample, show that L is not linear.

- **IV**. Let P_2 be the space of polynomials of degree at most 2, and let S be the ordered basis $\{t^2 t + 1, t 1, t^2 + 1\}$ (10) of P_2 .
- (a) If the S-coordinate vector of the polynomial p is $p_S = \begin{bmatrix} -1 \\ 2 \\ -1 \end{bmatrix}$, find p.
- (b) Find the S-coordinate vector of the polynomial $t^2 + t 1$.
- (c) Let T be the basis $\{t^2, t, 1\}$ of P_2 . Find the transition matrix (also called the change-of-basis matrix) $P_{T \leftarrow S}$ from S-coordinates to T-coordinates.
- **V**. Let *P* be a nonsingular $n \times n$ matrix.
- (6)
 - (a) Verify that $\det(P^{-1}) = 1/\det(P)$.
- (b) Use part (a) to verify that if A is any $n \times n$ matrix, then $\det(P^{-1}AP) = \det(A)$.
- VI. Let $A = ([a_{i,j}])$ be a 4 × 4 matrix, and consider the formula (4)

$$\det(A) = \sum (\pm) a_{1,\sigma(1)} a_{2,\sigma(2)} a_{3,\sigma(3)} a_{4,\sigma(4)}$$

Determine the sign (i. e. tell whether the term has a plus or a minus sign in the formula) of the term that contains $a_{1,2}a_{2,3}a_{3,4}a_{4,1}$ (make your reasoning clear— answers of "plus" or "minus" without a correct explanation won't receive any credit).

VII. Let V be a vector space of dimension 3, and let $T = \{t_1, t_2, t_3\}$ be an ordered basis of V. Let $L: V \to V$ be (5) the linear transformation whose matrix representation with respect to T-coordinates on the domain and

the codomain is $A = \begin{bmatrix} 0 & -2 & 1 \\ 1 & 2 & 1 \\ 0 & 2 & 0 \end{bmatrix}$. Write $L(2t_1 + t_2 - t_3)$ as a linear combination of t_1, t_2 , and t_3 .

VIII. An $n \times n$ matrix B is obtained from a matrix $A = [a_{i,j}]$ by the elementary row operation $kR_i \to R_i$. Use (4) the formula for det(A) to explain why det(B) = $k \det(A)$.