April 28, 2010
Instructions: Give concise answers, but clearly indicate your reasoning. Most of the problems have rather short answers, so if you find yourself involved in a lengthy calculation, it might be a good idea to move on and come back to that problem if you have time.
I. Let A be the matrix
(6)

$$
\left[\begin{array}{cccc}
t & -2 & 0 & 3 \\
0 & 3 & 1 & 2 \\
0 & t & 0 & 2 \\
t & 0 & 3 & 4
\end{array}\right] .
$$

(a) Calculate $\operatorname{det}(A)$ as follows. First do an elementary row operation to make the $(4,1)$-entry equal to 0 , then do cofactor expansion down the first column to reduce to computing the determinant of a 3×3 matrix. On that 3×3 matrix, do an elementary row operation that creates a second 0 in the middle column, and continue from there.
(b) Using your expression for $\operatorname{det}(A)$, find the values of t for which A is singular.
II. Let $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the linear transformation defined by
(10)

$$
L\left(\left[\begin{array}{l}
a \\
b \\
c_{c}
\end{array}\right]\right)=\left[\begin{array}{c}
a+2 b \\
a-b-c \\
3 a-2 c
\end{array}\right] .
$$

(You do not need to verify that L is linear.) As you know, the standard matrix representation of L is $A=\left[\begin{array}{ccc}1 & 2 & 0 \\ 1 & -1 & -1 \\ 3 & 0 & -2\end{array}\right]$.
(a) Use the standard matrix representation to find a basis for the kernel of L.
(b) Use the standard matrix representation to find a basis for the range of L.
III. (a) Let A be an $n \times m$ matrix, and let $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be the matrix transformation defined by $L(v)=A v$.
(8) Verify that L is linear.
(b) Let P_{3} be the space of polynomials of degree at most 3, and let $L: P_{3} \rightarrow P_{3}$ be the function defined by $L(p(t))=p(t)+t$. By giving a specific counterexample, show that L is not linear.
IV. Let P_{2} be the space of polynomials of degree at most 2 , and let S be the ordered basis $\left\{t^{2}-t+1, t-1, t^{2}+1\right\}$ (10) of P_{2}.
(a) If the S-coordinate vector of the polynomial p is $p_{S}=\left[\begin{array}{c}-1 \\ 2 \\ -1\end{array}\right]$, find p.
(b) Find the S-coordinate vector of the polynomial $t^{2}+t-1$.
(c) Let T be the basis $\left\{t^{2}, t, 1\right\}$ of P_{2}. Find the transition matrix (also called the change-of-basis matrix) $P_{T \leftarrow S}$ from S-coordinates to T-coordinates.
V. Let P be a nonsingular $n \times n$ matrix.
(6)
(a) Verify that $\operatorname{det}\left(P^{-1}\right)=1 / \operatorname{det}(P)$.
(b) Use part (a) to verify that if A is any $n \times n$ matrix, then $\operatorname{det}\left(P^{-1} A P\right)=\operatorname{det}(A)$.
VI. Let $A=\left(\left[a_{i, j}\right]\right)$ be a 4×4 matrix, and consider the formula

$$
\begin{equation*}
\operatorname{det}(A)=\sum(\pm) a_{1, \sigma(1)} a_{2, \sigma(2)} a_{3, \sigma(3)} a_{4, \sigma(4)} \tag{4}
\end{equation*}
$$

Determine the sign (i. e. tell whether the term has a plus or a minus sign in the formula) of the term that contains $a_{1,2} a_{2,3} a_{3,4} a_{4,1}$ (make your reasoning clear- answers of "plus" or "minus" without a correct explanation won't receive any credit).
VII. Let V be a vector space of dimension 3 , and let $T=\left\{t_{1}, t_{2}, t_{3}\right\}$ be an ordered basis of V. Let $L: V \rightarrow V$ be (5) the linear transformation whose matrix representation with respect to T-coordinates on the domain and the codomain is $A=\left[\begin{array}{ccc}0 & -2 & 1 \\ 1 & 2 & 1 \\ 0 & 2 & 0\end{array}\right]$. Write $L\left(2 t_{1}+t_{2}-t_{3}\right)$ as a linear combination of t_{1}, t_{2}, and t_{3}.
VIII. An $n \times n$ matrix B is obtained from a matrix $A=\left[a_{i, j}\right]$ by the elementary row operation $k R_{i} \rightarrow R_{i}$. Use the formula for $\operatorname{det}(A)$ to explain why $\operatorname{det}(B)=k \operatorname{det}(A)$.

