Math 4853 homework

- 62. Prove that every uncountable subset of \mathbb{R} has a limit point in \mathbb{R} . (Let A be an uncountable subset of \mathbb{R} , and for $n \in \mathbb{Z}$ put $A_n = A \cap [n, n+1]$.)
- 63. Let $\{x_n\}$ be a sequence in a metric space X. Prove that if $x_n \to x$, then $\{x_n\}$ is Cauchy.
- 64. Give \mathbb{R}^k the metric d(x, y) = ||x y||. Let $\{z_n\}$ be a sequence of points in \mathbb{R}^k , written in coordinates as $z_n = (z_n^1, z_n^2, \dots, z_n^k)$. Prove that $\{z_n\}$ is Cauchy if and only if each $\{z_n^i\}$ is a Cauchy sequence in $(\mathbb{R}, |x - y|)$.
- 65. Let $\{f_n\}$ be a sequence of functions in $C([0,1], \mathbb{R}^k)$ (the set of continuous functions from [0,1] to \mathbb{R}^k . Prove that if $\{f_n\} \to f$ uniformly, then $\{f_n\} \to f$ pointwise.
- 66. Let $f_n: [0,1] \to \mathbb{R}$ be $f_n(x) = x^n$, and let $f: [0,1] \to \mathbb{R}$ be defined by f(x) = 0 if x < 1and f(1) = 1. Using the definitions, prove that $f_n \to f$ pointwise but not uniformly.