Math 4853 homework solutions (version of February 12, 2010)

1. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the function defined by $f(x)=x^{2}$. Prove (directly from the definition) that f is continuous.

Fix x_{0}, and suppose for now that $x_{0} \neq 0$. Note first that if $\left|x-x_{0}\right|<\left|x_{0}\right|$, then $|x|=\mid x-$ $x_{0}+x_{0}\left|\leq\left|x-x_{0}\right|+\left|x_{0}\right|<\left|x_{0}\right|+\left|x_{0}\right|=2\right| x_{0} \mid$. Now, given $\epsilon>0$, put $\delta=\min \left\{\left|x_{0}\right|, \epsilon /\left(3\left|x_{0}\right|\right)\right\} ;$ since $x_{0} \neq 0, \delta>0$. Then, if $\left|x-x_{0}\right|<\delta$, we have

$$
\left|x^{2}-x_{0}^{2}\right|=\left|x+x_{0}\right|\left|x-x_{0}\right|<3\left|x_{0}\right| \epsilon /\left(3\left|x_{0}\right|\right)=\epsilon .
$$

Suppose now that $x_{0}=0$. Given $\epsilon>0$, put $\delta=\sqrt{\epsilon}$. If $|x-0|<\delta$, then $\left|x^{2}-0^{2}\right|=x^{2}<$ $(\sqrt{\epsilon})^{2}=\epsilon$.
2. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the function defined as follows.
$f(x)= \begin{cases}(q-1) / q & x \text { is rational and } x= \pm \frac{p}{q} \text { in lowest terms with } p \geq 0 \text { and } q>0 \\ 1 & x \text { is irrational }\end{cases}$
Prove (directly from the definition) that if x is irrational, then f is continuous at x.
Given ϵ, choose a positive integer N with $1 / N<\epsilon$. Let S be the set of rational numbers in the interval $(x-1, x+1)$ with the following property:

If r_{i} is written as p_{i} / q_{i} with p_{i} and q_{i} integers in lowest terms, with $q_{i}>0$, then $q_{i} \leq N$.

We note that S is nonempty, since there is at least one integer in the interval $(x-1, x+1)$ for which the denominator is 1 , and S is finite, since the interval $(x-1, x+1)$ has finite length. So we can write $S=\left\{r_{1}, \ldots, r_{k}\right\}$.

Each $\left|r_{i}-x\right|>0$, since x is irrational, so the number $S_{\text {min }}=\min \left\{\left|r_{i}-x\right|\right\}_{r_{i} \in S}$ is positive. Put $\delta=\min \left\{S_{m i n}, 1\right\}$.

Case I: z is irrational
In this case $|f(z)-f(x)|=|1-1|=0<\epsilon$.
Case II: z is rational
Since $|z-x|<\delta \leq 1, z \in(x-\delta, x+\delta)$, but since $|z-x|<\delta, z$ cannot equal any r_{i}. So $z=p / q$ in lowest terms with $q>N$. Therefore $|f(z)-f(x)|=|(q-1) / q-1|=1 / q<$ $1 / N<\epsilon$.
3. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the function defined as follows.

$$
f(x)= \begin{cases}1 & x \in \mathbb{Q} \\ 0 & x \notin \mathbb{Q}\end{cases}
$$

[where \mathbb{Q} denotes the set of rational numbers] Use proof by contradiction to prove that f is not continuous at any x_{0}.

Fix x_{0} and suppose for contradiction that f is continuous at x_{0}. Then there exists $\delta>0$ such that if $\left|x-x_{0}\right|<\delta$, then $\left|f(x)-f\left(x_{0}\right)\right|<1$.
Case I: x_{0} is rational.
Choose an irrational x in the interval $\left(x_{0}-\delta, x_{0}+\delta\right)$. Then $\left|x-x_{0}\right|<\delta$, but $\left|f(x)-f\left(x_{0}\right)\right|=$ $|0-1|=1$, a contradiction.
Case II: x_{0} is irrational.
Choose a rational x in the interval $\left(x_{0}-\delta, x_{0}+\delta\right)$. Then $\left|x-x_{0}\right|<\delta$, but $\left|f(x)-f\left(x_{0}\right)\right|=$ $|1-0|=1$, a contradiction.
4. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the function defined as follows.

$$
f(x)= \begin{cases}1 / q & x \text { is rational and } x=p / q \text { in lowest terms with } q>0 \\ 0 & x \text { is irrational }\end{cases}
$$

Use proof by contradiction to prove that if x is rational, then f is not continuous at x.

Fix a rational number x_{0} and suppose for contradiction that f is continuous at x_{0}. Write $x_{0}=p / q$ in lowest terms with $q>0$. Then there exists $\delta>0$ such that if $\left|x-x_{0}\right|<\delta$, then $\left|f(x)-f\left(x_{0}\right)\right|<1 / q$. Choose an irrational x in the interval $\left(x_{0}-\delta, x_{0}+\delta\right)$. Then $\left|x-x_{0}\right|<\delta$, but $\left|f(x)-f\left(x_{0}\right)\right|=|0-1 / q|=1 / q$, a contradiction.

