
Math 4853 homework solutions (version of February 23, 2010)

5. Prove directly from the definition of continuity that if f : R→ R and g : R→ R are
continuous at x0, and g(x0) 6= 0, then the quotient function f/g is continuous at x0.

Fix x0 and let ε > 0 be given.

Since f is continuous at x0 and g(x0) 6= 0, there exists δ1 > 0 so that if |x−x0| < δ1, then
|f(x)− f(x0)| < ε|g(x0)|/4.

Since g is continuous at x0 and g(x0) 6= 0, there exists δ2 > 0 so that if |x− x0| < δ2, then
|g(x)− g(x0)| < ε|g(x0)|2/(4(|f(x0)|+ 1)).

Since g is continuous at x0 and g(x0) 6= 0, there exists δ3 > 0 so that if |x− x0| < δ2, then
|g(x)−g(x0)| < |g(x0)|/2. Notice that the latter implies that |g(x0)| = |g(x0)−g(x)+g(x)| ≤
|g(x0)− g(x)|+ |g(x)| < |g(x0)|/2 + |g(x)|, so |g(x)| > |g(x0)|/2.

For |x− x0| < min{δ1, δ2, δ3}, we have

|(f/g)(x)− (f/g)(x0)| =
∣∣∣∣f(x)

g(x)
− f(x0)

g(x0

∣∣∣∣ =

∣∣∣∣f(x)g(x0)− f(x0)g(x)

g(x)g(x0)

∣∣∣∣
=

∣∣∣∣(f(x)− f(x0))g(x0) + f(x0)(g(x0)− g(x))

g(x)g(x0)

∣∣∣∣
≤ |f(x)− f(x0)|
|g(x)g(x0)|

|g(x0)|+ |f(x0)|
|g(x0)− g(x)|
|g(x)g(x0)|

=
|f(x)− f(x0)|
|g(x)|

+ |f(x0)|
|g(x0)− g(x)|
|g(x)| |g(x0)|

<
|f(x)− f(x0)|
|g(x0)|/2

+ |f(x0)|
|g(x0)− g(x)|
|g(x0)|2/2

<
ε|g(x0)|/4
|g(x0)|/2

+ |f(x0)|
ε|g(x0)|2/(4(|f(x0)|+ 1))

|g(x0)|2/2

=
ε

2
+
|f(x0)|
|f(x0)|+ 1

ε

2
< ε

6. Let f : R → R and g : R → R be continuous functions. Prove that the composite
function g ◦ f is continuous.

Fix x0 and let ε > 0 be given. Since g is continuous at f(x0), there exists δ1 > 0 so that if
|z − f(x0)| < δ1, then |g(z)− g(f(x0))|.

Since f is continuous at x0, there exists δ > 0 so that if |x−x0| < δ, then |f(x)−f(x0)| < δ1.

If |x− x0| < δ, then |f(x)− f(x0)| < δ1 and consequently |g(f(x))− g(f(x0))| < ε.

7. Prove that if f : R→ R and g : R→ R are continuous at x0, and g(x0) 6= 0, then the
quotient function f/g is continuous at x0 as follows: First prove that the reciprocal
function defined by k(x) = 1/x is continuous, then apply the facts that composites
and products of continuous functions are continuous.
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Let x0 6= 0 be given. Notice that if |x−x0| < |x0|/2, then |x0| = |x0−x+x| ≤ |x0−x|+ |x| <
|x0|/2 + |x| and consequently |x| > |x0|/2. Put δ = ε|x0|2/2. If |x− x0| < δ, then∣∣∣∣1x − 1

x0

∣∣∣∣ =

∣∣∣∣x0 − x
xx0

∣∣∣∣ =
|x0 − x|
|x| |x0|

<
ε|x0|2/2
|x0|2/2

= ε .

This shows that the reciprocal function is continuous.

Suppose that f and g are continuous. By Problem 6 (at all points where g(x) 6= 0),
k ◦ g is continuous. Since a product of continuous functions is continuous, it follows that
f/g = f · (k ◦ g) continuous.

8. Let f : Rm → Rn and g : Rn → Rk be continuous functions. Prove that the composite
function g ◦ f : Rm → Rk is continuous.

(the proof is the same as the proof in Problem 6, except that norms must be used instead
of absolute values).

9. For 1 ≤ k ≤ n, let πk : Rn → R be the projection function defined by πk(r1, . . . , rn) =
rk. Let f : Rm → Rn be a function. Define fk : Rm → R by fk = πk ◦ f , so that
f(x) = (f1(x), f2(x), . . . , fn(x)).
(a) Prove that πk is continuous. Deduce that if f is continuous, then each fk is

continuous.
(b) Prove that if each fk is continuous, then f is continuous. Hint: For each k,

there exists δk so that ‖x − x0 ‖ < δk implies |fk(x) − fk(x0)| <
ε√
n

. Put

δ = min1≤k≤n{δk}.

For (a), given x ∈ Rn and ε > 0, put δ = ε. If ‖ z − x ‖ < δ, then |πk(z) − πk(x)| =

|zk − xk| =
√

(zk − xk)2 ≤
√∑n

i=1(zi − xi)2 = ‖ z − x ‖ < ε.

For (b), assume that each fk is continuous. Let x ∈ Rn and for each k, choose δk such
that if ‖ z − x ‖ < δk then |fk(z) − fk(z)| < ε/

√
n. Then for ‖ z − x ‖ < min1≤k≤n{δk}, we

have

‖ f(z)− f(x) ‖ =

(
n∑
k=1

(fk(z)− fk(x))2

)1/2

=

(
n∑
k=1

|fk(z)− fk(x)|2
)1/2

<

(
n∑
k=1

(ε/
√
n)2

)1/2

=

(
n∑
k=1

ε2/n

)1/2

=
√
ε2 = ε

10. For a set X we define X ×X to be the set of ordered pairs of elements of X, that is,
X ×X = {(a, b) | a, b ∈ X}. A metric on X is a function d : X ×X → R satisfying

1. d(a, b) ≥ 0 for all a, b ∈ X, and d(a, b) = 0 if and only if a = b.
2. d(a, b) = d(b, a) for all a, b ∈ X.
3. d(a, b) ≤ d(a, c) + d(c, b) for all a, b, c ∈ X.

(A metric is a function with the properties that we expect “distance” to have. For
example, putting d(x, y) = ‖x − y ‖ defines a metric on Rn.) If X is a set with a
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metric d, then for x ∈ X and ε > 0, we define the open ball of radius ε centered at x
to be B(x, ε) = {z ∈ X | d(z, x) < ε}. Prove the following:
(i) For all ε > 0, a ∈ B(a, ε).
(ii) If z ∈ B(x, ε), then ∃δ > 0, B(z, δ) ⊆ B(x, ε).

(iii) If a subset W of X is a union of open balls, then ∀x ∈ W,∃ε > 0, B(x, ε) ⊆ W .

For (i), d(x, x) = 0 < ε by property 1, so x ∈ B(x, ε).

For (ii), given z ∈ B(x, ε), put δ = ε− d(z, x). Suppose that y ∈ B(z, δ). Using property
3, d(y, x) ≤ d(y, z) + d(z, x) < δ + d(z, x) = ε, so y ∈ B(x, ε). Therefore B(z, δ) ⊆ B(x, ε).

For (iii), suppose that W = ∪α∈AB(xα, εα) is a union of open balls. Let x ∈ W . Then
x ∈ B(xβ, εβ) for some β ∈ A. By (ii), there exists ε > 0 such that B(x, ε) ⊆ B(xβ, εβ) ⊆ W .

11. (no need to turn in, but ask about it in class if you have difficulty) For each of the
following subsets of R, determine whether the set is open, and whether its complement
is open: {r | r > 0}, {r | r is not an integer}, {r | r is rational}.

{r | r > 0} is open, its complement is not.

{r | r is not an integer} is open, its complement is not.

{r | r is rational}, is not open, neither is its complement.

12. (no need to turn in, but ask about it in class if you have difficulty) For each of the fol-
lowing subsets of R2, determine whether the set is open, and whether its complement
is open: {(r1, r2) | r1 > 0}, {(r1, r2) | r1 is not an integer}, {(r1, 0) | r1 is not an integer},
{(r1, r2) | r2 = sin(r1)}.

{(r1, r2) | r1 > 0} is open, its complement is not.

{(r1, r2) | r1 is not an integer} is open, its complement is not.

{(r1, 0) | r1 is not an integer} is not open, nor is its complement.

{(r1, r2) | r2 = sin(r1)} is not open, its complement is open.

13. Let S(x, ε) ⊆ R2 be the open square of side 2ε centered at x. That is, S((x1, x2), ε) =
{(z1, z2) | ‖ z1 − x1 ‖ < ε and ‖ z2 − x2 ‖ < ε}.
(a) Prove that S(x, ε) is open. (To figure out a δ with B(y, δ) ⊆ S(x, ε), draw a

picture. The argument uses the fact that each |zi − xi| ≤ ‖ z − x ‖.)
(b) Generalize to Rn by defining the open n-dimensional cube S(x, ε) in Rn and

proving that it is open.

For (a), let y ∈ S(x, ε). Then |y1 − x1| < ε and |y2 − x2| < ε, so δ = min{ε − |y1 − x1|, ε −
|y2 − x2|} > 0. If z ∈ B(y, δ), then |z1 − x1| ≤ |z1 − y1|+ |y1 − x1| < ‖ z − y ‖+ |y1 − x1| <
δ + |y1 − x1| ≤ ε− |y1 − x1|+ |y1 − x1| = ε, and similarly |zx − x2| < ε, so z ∈ S(x, ε).

For (b), let y ∈ S(x, ε). Then for 1 ≤ i ≤ n, |yi − xi| < ε. Therefore δ = min1≤i≤n{ε− |yi −
xi|} > 0. If z ∈ B(y, δ), then for each i, |zi−xi| ≤ |zi− yi|+ |yi−xi| < ‖ z− y ‖+ |yi−xi| <
δ + |yi − xi| ≤ ε− |yi − xi|+ |yi − xi| = ε, so y ∈ S(x, ε).
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14. (2/12) (a) Prove that if x ∈ Rn and ε > 0, then S(x, ε/
√
n) ⊂ B(x, ε).

(b) Let U ⊂ Rn. Prove that U is open if and only if U is a union of open n-
dimensional cubes.

For (a), let z ∈ S(x, ε). Then

‖ z − x ‖ =

√√√√ n∑
i=1

(zi − xi)2 =

√√√√ n∑
i=1

|zi − xi|2 <

√√√√ n∑
i=1

(ε/
√
n)2 <

√
n(ε)2/n = ε ,

so z ∈ B(x, ε).

For (b), suppose first that U is open, and let x ∈ U . Then there is an εx such that
B(x, εx) ⊂ U . By part (a), S(x, εx/

√
n) ⊂ B(x, εx) ⊂ U . Therefore U = ∪x∈U{x} ⊆

∪x∈US(x, εx/
√
n) ⊂ U , so U = ∪x∈US(x, εx/

√
n).

Conversely, suppose that U = ∪α∈AS(xα, εα). Let x ∈ U . Then x ∈ S(xβ, εβ) for some β ∈
A. By Problem 13, S(xβ, εβ) is open, so there exists ε > 0 such that B(x, ε) ⊆ S(xβ, εβ) ⊆ U .
Therefore U is open.

[Or, you can give the conversely argument in words: Suppose that U is a union of open
cubes. Each of the open cubes is open, by Problem 13, so is a union of open balls. Taking
the union of all those open balls gives U .]

15. Let S(x, ε) ⊆ R2 be the open square of side 2ε centered at x. That is, S((x1, x2), ε) =
{(z1, z2) | ‖ z1 − x1 ‖ < ε and ‖ z2 − x2 ‖ < ε}.
(a) Prove that S(x, ε) is open. (To figure out a δ with B(y, δ) ⊆ S(x, ε), draw a

picture. The argument uses the fact that each |zi − xi| ≤ ‖ z − x ‖.)
(b) Generalize to Rn by defining the open n-dimensional cube S(x, ε) in Rn and

proving that it is open.

For (a), let y ∈ S(x, ε). Then |y1 − x1| < ε and |y2 − x2| < ε, so δ = min{ε − |y1 − x1|, ε −
|y2 − x2|} > 0. If z ∈ B(y, δ), then |z1 − x1| ≤ |z1 − y1|+ |y1 − x1| < ‖ z − y ‖+ |y1 − x1| <
δ + |y1 − x1| ≤ ε− |y1 − x1|+ |y1 − x1| = ε, and similarly |zx − x2| < ε, so z ∈ S(x, ε).

For (b), let y ∈ S(x, ε). Then for 1 ≤ i ≤ n, |yi − xi| < ε. Therefore δ = min1≤i≤n{ε− |yi −
xi|} > 0. If z ∈ B(y, δ), then for each i, |zi−xi| ≤ |zi− yi|+ |yi−xi| < ‖ z− y ‖+ |yi−xi| <
δ + |yi − xi| ≤ ε− |yi − xi|+ |yi − xi| = ε, so y ∈ S(x, ε).

16. (a) Prove that if x ∈ Rn and ε > 0, then S(x, ε/
√
n) ⊂ B(x, ε).

(b) Let U ⊂ Rn. Prove that U is open if and only if U is a union of open n-
dimensional cubes.

For (a), let z ∈ S(x, ε). Then

‖ z − x ‖ =

√√√√ n∑
i=1

(zi − xi)2 =

√√√√ n∑
i=1

|zi − xi|2 <

√√√√ n∑
i=1

(ε/
√
n)2 <

√
n(ε)2/n = ε ,

so z ∈ B(x, ε).
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For (b), suppose first that U is open, and let x ∈ U . Then there is an εx such that
B(x, εx) ⊂ U . By part (a), S(x, εx/

√
n) ⊂ B(x, εx) ⊂ U . Therefore U = ∪x∈U{x} ⊆

∪x∈US(x, εx/
√
n) ⊂ U , so U = ∪x∈US(x, εx/

√
n).

Conversely, suppose that U = ∪α∈AS(xα, εα). Let x ∈ U . Then x ∈ S(xβ, εβ) for some β ∈
A. By Problem 13, S(xβ, εβ) is open, so there exists ε > 0 such that B(x, ε) ⊆ S(xβ, εβ) ⊆ U .
Therefore U is open.

[Or, you can give the conversely argument in words: Suppose that U is a union of open
cubes. Each of the open cubes is open, by Problem 13, so is a union of open balls. Taking
the union of all those open balls gives U .]

17. Not to be turned in, but this task is a great way to prepare for next week’s test:
Write an exam over the material we have had in the course up until now. You will
need to go back over what we have done and think about the major topics, ideas,
and techniques. Think of some different kinds of questions such as giving important
definitions, arguments that were steps in more complicated proofs we did, proofs
for examples similar to examples we did in class, giving examples satisfying certain
conditions, variations on homework problems. Try to focus on the conceptually more
important matters rather than minutiae, and to cover a broad range of ideas and
techniques. And it should be something that a student can reasonably be expected
to complete in 50 minutes. If you want, exchange copies and try each other’s tests. By
the way, inexperienced test writers usually produce exams that are too long and/or
too difficult.
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