Math 4853 homework solutions (version of April 5, 2010)
18. Verify that if U is open in the standard topology on \mathbb{R}, then it is open in the lower limit topology on \mathbb{R}.

Let U be open in the standard topology, and let $x \in U$. Then there exists $\epsilon>0$ such that $(x-\epsilon, x+\epsilon)=B(x, \epsilon) \subseteq U$. Therefore $x \in[x, x+\epsilon) \subseteq U$, so U is open in the lower-limit topology.
19. Verify that the cofinite topology on \mathbb{R} is a topology. You will probably want to make use of DeMorgan's identities: If $\left\{A_{\alpha}\right\}_{\alpha \in \mathcal{A}}$ are subsets of a set X, then $X-\cup_{\alpha \in \mathcal{A}} A_{\alpha}=$ $\cap_{\alpha \in \mathcal{A}}\left(X-A_{\alpha}\right)$ and $X-\cap_{\alpha \in \mathcal{A}} A_{\alpha}=\cup_{\alpha \in \mathcal{A}}\left(X-A_{\alpha}\right)$.

Let \mathcal{U} be the cofinite topology on \mathbb{R}. By definition, $\emptyset \in \mathcal{U}$. Since $\mathbb{R}-\mathbb{R}=\emptyset$ is finite, $\mathbb{R} \in \mathcal{U}$.

Suppose that $\left\{U_{\alpha}\right\}_{\alpha \in \mathcal{A}} \subseteq \mathcal{U}$. If all $U_{\alpha}=\emptyset$, then $\cup_{\alpha \in \mathcal{A}} U_{\alpha}=\emptyset \in \mathcal{U}$. Otherwise, $U_{\beta} \neq \emptyset$ for some $\beta \in \mathcal{A}$. We have $U_{\beta} \subseteq \cup_{\alpha \in \mathcal{A}} U_{\alpha}$, so $\mathbb{R}-\cup_{\alpha \in \mathcal{A}} U_{\alpha} \subseteq \mathbb{R}-U_{\beta}$. The latter is finite, hence so is $\mathbb{R}-\cup_{\alpha \in \mathcal{A}} U_{\alpha}$, so $\cup_{\alpha \in \mathcal{A}} U_{\alpha} \in \mathcal{U}$. [Or one can use DeMorgan here: $\mathbb{R}-\cup_{\alpha \in \mathcal{A}} U_{\alpha}=$ $\cap_{\alpha \in \mathcal{A}}\left(\mathbb{R}-U_{\alpha}\right) \subseteq \mathbb{R}-U_{\beta}$ is finite.]

Suppose that $\left\{U_{i}\right\}_{i=1}^{n} \subseteq \mathcal{U}$. If some $U_{k}=\emptyset$, then $\cap_{i=1}^{n} U_{i}=\emptyset \in \mathcal{U}$. Otherwise, each $\mathbb{R}-U_{i}$ is finite, and $\mathbb{R}-\cap_{i=1}^{n} U_{i}=\cup_{i=1}^{n}\left(\mathbb{R}-U_{i}\right)$ is a union of finite sets, so is finite. Therefore $\cap_{i=1}^{n} U_{i} \in \mathcal{U}$.
20. Define $\mathcal{A}=\{U \subset \mathbb{R} \mid U$ is finite $\} \cup\{\mathbb{R}\}$. Verify that \mathcal{A} satisfies two of the three properties to be a topology on \mathbb{R}, but not the other one.
\emptyset is finite, and $\mathbb{R} \in \mathcal{A}$ by definition.
Suppose that $\left\{U_{i}\right\}_{i=1}^{n} \subseteq \mathcal{A}$. If all $U_{k}=\mathbb{R}$, then then $\cap_{i=1}^{n} U_{i}=\mathbb{R} \in \mathcal{A}$. Otherwise, some U_{k} is finite, and $\cap_{i=1}^{n} U_{i} \subseteq U_{k}$ so $\cap_{i=1}^{n} U_{i}$ is finite and hence is in \mathcal{A}.

The union condition fails: For $n \in \mathbb{Z},\{n\} \in \mathcal{A}$, but $\cup_{n \in \mathbb{Z}}\{n\}=\mathbb{Z} \notin \mathcal{A}$.
21. Define $\mathcal{A}=\{U \subset \mathbb{R} \mid \forall x \in U, \exists a, b \in \mathbb{R}$, either $x \in[a, b) \subseteq U$ or $x \in(a, b] \subseteq U\}$. Verify that \mathcal{A} satisfies two of the three properties to be a topology on \mathbb{R}, but not the other one.
$\emptyset \in \mathcal{A}$ since it vacuously satisfies the condition to be in \mathcal{A}. Let $x \in \mathbb{R}$. Then $x \in[x, x+1) \subseteq$ \mathbb{R}, showing that $\mathbb{R} \in \mathcal{A}$.

Suppose that $\left\{U_{\alpha}\right\}_{\alpha \in \mathcal{A}} \subseteq \mathcal{A}$. Let $x \in \cup_{\alpha \in \mathcal{A}} U_{\alpha}$. Then $x \in U_{\beta}$ for some β. Since $U_{\beta} \in \mathcal{A}$, there exist $a, b \in \mathbb{R}$ such that either $x \in[a, b) \subseteq U_{\beta}$ or $x \in(a, b] \subseteq U_{\beta}$. Since $U_{\beta} \subseteq \cup_{\alpha \in \mathcal{A}} U_{\alpha}$, either $x \in[a, b) \subseteq \cup_{\alpha \in \mathcal{A}} U_{\alpha}$ or $x \in(a, b] \subseteq \cup_{\alpha \in \mathcal{A}} U_{\alpha}$.

The intersection condition fails: $[0,1)$ and $(-1,0]$ are in \mathcal{A}, but $[0,1) \cap(-1,0]=\{0\}$ is not in in \mathcal{A}. [To check this, if $0 \in[a, b)$ then $b>0$ so $[a, b) \nsubseteq\{0\}$, and if $0 \in(a, b]$, then $a<0$ so $(a, b] \nsubseteq\{0\}$.]
22. Let $X=\mathbb{Q}$, the set of rational numbers, with the subspace topology as a subset of \mathbb{R}. Prove that if U is any nonempty open subset of \mathbb{Q}, then there exist nonempty open subsets U_{1} and U_{2} such that $U=U_{1} \cup U_{2}$ and $U_{1} \cap U_{2}=\emptyset$. Notice that this appears not to be true for the standard topology on \mathbb{R} (and indeed it is not true).

Let U be a nonempty open set, and choose $x_{0} \in U$. Now $U=V \cap \mathbb{Q}$ for some open set V in \mathbb{R}. Since V is open, there exists $\epsilon>0$ such that $\left(x_{0}-\epsilon, x_{0}+\epsilon\right) \subset V$, and hence $\left(x_{0}-\epsilon, x_{0}+\epsilon\right) \cap \mathbb{Q} \subset U$. Choose a rational number r with $r \in\left(x_{0}, x_{0}+\epsilon\right) \cap \mathbb{Q}$, and choose an irrational number s with $x_{0}<s<r$. Let $V_{1}=(-\infty, s) \cap \mathbb{Q}$ and $V_{2}=(s, \infty) \cap \mathbb{Q}$. These are open in the subspace topology on \mathbb{Q}, and $V_{1} \cup V_{2}=(((-\infty, s) \cap \mathbb{Q}) \cup((s, \infty) \cap \mathbb{Q})=$ $((-\infty, s) \cup(s, \infty)) \cap \mathbb{Q}=(\mathbb{R}-\{s\}) \cap \mathbb{Q}=\mathbb{Q}$. For $i=1,2$, let $U_{i}=V_{i} \cap U$. Since $x_{0} \in U_{1}$ and $r \in U_{2}, U_{1}$ and U_{2} are nonempty. We also have $U_{1} \cup U_{2}=\left(V_{1} \cup V_{2}\right) \cap U=\mathbb{Q} \cap U=U$, and $U_{1} \cap U_{2} \subseteq(-\infty, s) \cap(s, \infty)=\emptyset$.
23. Let X be a set and let \mathcal{B} be a collection of subsets of X. Define $\mathcal{U}=\{U \subseteq X \mid \forall x \in$ $U, \exists B \in \mathcal{B}, x \in B \subseteq U\}$. Prove that $U \in \mathcal{U}$ if and only if U is a union of elements of \mathcal{B}.

Suppose that $U \in \mathcal{U}$. For each $x \in U$, choose $B_{x} \in \mathcal{B}$ satisfying $x \in B_{x} \subseteq U$. Then $U \subseteq \cup_{x \in U}\{x\} \subseteq \cup_{x \in U} B_{x} \subseteq U$, so $U=\cup_{x \in U} B_{x}$.

Suppose that $U=\cup_{\gamma \in \mathcal{G}} B_{\gamma}$ where each $B_{\gamma} \in \mathcal{B}$. Let $x \in U$. Then $x \in B_{\delta}$ for some $\delta \in \mathcal{G}$, and $x \in B_{\delta} \subseteq U$.
24. Let X be a set and let \mathcal{B} be a collection of subsets of X. We say that \mathcal{B} is a basis if it satisfies:
B1. $X=\cup_{B \in \mathcal{B}} B$.
B2. $\forall B_{1}, B_{2} \in \mathcal{B}, \forall x \in B_{1} \cap B_{2}, \exists B \in \mathcal{B}, x \in B \subseteq B_{1} \cap B_{2}$.
Define $\mathcal{U}=\{U \subseteq X \mid \forall x \in U, \exists B \in \mathcal{B}, x \in B \subseteq U\}$. Prove that if \mathcal{B} is a basis, then \mathcal{U} is a topology on X.

Since $X=\cup_{B \in \mathcal{B}} B$, Problem 23 shows that $X \in \mathcal{U}$. The empty set \emptyset vacuously satisfies the condition $\forall x \in \emptyset, \exists B \in \mathcal{B}, x \in B \subseteq U$, so $\emptyset \in \mathcal{U}$.

Suppose $U_{\alpha} \in \mathcal{U}$ for $\alpha \in \mathcal{A}$. Let $x \in \cup_{\alpha \in \mathcal{A}} U_{\alpha}$. Then $x \in U_{\beta}$ for some $\beta \in \mathcal{A}$. There exists $B \in \mathcal{B}$ such that $x \in B \subseteq U_{\beta} \subseteq \cup_{\alpha \in \mathcal{A}}$. Therefore $\cup_{\alpha \in \mathcal{A}} \in \mathcal{U}$.

For T3, it suffices to show that the intersection of any two elements of \mathcal{U} is in \mathcal{U}. Suppose that $U, V \in \mathcal{U}$, and that $x \in U \cap V$. Choose $B_{U}, B_{V} \in \mathcal{B}$ such that $x \in B_{U} \subseteq U$ and $x \in B_{V} \subseteq V$. There exists $B \in \mathcal{B}$ such that $x \in B \subseteq B_{U} \cap B_{v} \subseteq U \cap V$. Therefore $U \cap V \in \mathcal{B}$.
25. Let X be a topological space and let \mathcal{B} be a basis for the topology on X. Let $A \subset X$, and define $\mathcal{B}_{A}=\{B \cap A \mid B \in \mathcal{B}\}$.
a. Prove that \mathcal{B}_{A} is a basis.
b. Prove that \mathcal{B}_{A} generates the subspace topology on A.

For B1, let $a \in A$. Since \mathcal{B} is a basis, there exists $B_{a} \in \mathcal{B}$ such $a \in B_{a}$. Then, $a \in B_{a} \cap A \in$ \mathcal{B}_{A}. Since each element of \mathcal{B}_{A} is a subset of A, this proves that $A \subseteq \cup_{a \in A} B_{a} \subseteq \cup_{B \in \mathcal{B}_{A}} B \subseteq A$, so $A=\cup_{B \in \mathcal{B}_{A}} B$.

For B2, let $B_{1}, B_{2} \in \mathcal{B}_{A}$, and let $a \in B_{1} \cap B_{2}$. There exist basis elements $B_{1}^{\prime}, B_{2}^{\prime} \in \mathcal{B}$ such that $B_{1}=B_{1}^{\prime} \cap A$ and $B_{2}=B_{2}^{\prime} \cap A$. Since $a \in B_{1} \cap B_{2} \subseteq B_{1}^{\prime} \cap B_{2}^{\prime}$, and \mathcal{B} is a basis, there exists $B^{\prime} \in \mathcal{B}$ such that $a \in B^{\prime} \subseteq B_{1}^{\prime} \cap B_{2}^{\prime}$. So $a \in B^{\prime} \cap A \subseteq\left(B_{1}^{\prime} \cap B_{2}^{\prime}\right) \cap A=\left(B_{1}^{\prime} \cap A\right) \cap\left(B_{2}^{\prime} \cap A\right)=$ $B_{1} \cap B_{2}$.

To show that \mathcal{B}_{A} generates the subspace topology, let \mathcal{U} be the subspace topology and let \mathcal{U}_{A} be the topology generated by \mathcal{B}_{A}.

Suppose that $U \in \mathcal{U}$. Let $a \in U$. There exists V open in X with $U=V \cap A$. Since $a \in V$ and \mathcal{B} is a basis for the topology on X, there exists $B^{\prime} \in \mathcal{B}$ such that $a \in B^{\prime} \subseteq V$. So $a \in B^{\prime} \cap A \subseteq V \cap A=U$, and $B^{\prime} \cap A \in \mathcal{B}_{A}$. This proves that $\mathcal{U} \subseteq \mathcal{U}_{A}$.

Suppose that $U \in \mathcal{U}_{A}$. For every $a \in U$, choose $B_{a} \in \mathcal{B}_{A}$ with $x \in B_{a} \in U$. Each $B_{a}=B_{a}^{\prime} \cap A$ for some $B_{a}^{\prime} \in \mathcal{B}$. Let $V=\cup_{a \in A} B_{a}^{\prime}$; it is a union of open sets in X, so is open in X. We have $V \cap A=\left(\cup_{a \in A} B_{a}^{\prime}\right) \cap A=\cup_{a \in A}\left(B_{a}^{\prime} \cap A\right)=\cup_{a \in A} B_{a}=U$, so $U \in \mathcal{U}$.

We conclude that $\mathcal{U}=\mathcal{U}_{A}$.

