Math 4853 homework solutions (version of April 5, 2010)

18. Verify that if U is open in the standard topology on \mathbb{R} , then it is open in the lower limit topology on \mathbb{R} .

Let U be open in the standard topology, and let $x \in U$. Then there exists $\epsilon > 0$ such that $(x - \epsilon, x + \epsilon) = B(x, \epsilon) \subseteq U$. Therefore $x \in [x, x + \epsilon) \subseteq U$, so U is open in the lower-limit topology.

19. Verify that the cofinite topology on \mathbb{R} is a topology. You will probably want to make use of DeMorgan's identities: If $\{A_{\alpha}\}_{\alpha \in \mathcal{A}}$ are subsets of a set X, then $X - \bigcup_{\alpha \in \mathcal{A}} A_{\alpha} = \bigcap_{\alpha \in \mathcal{A}} (X - A_{\alpha})$ and $X - \bigcap_{\alpha \in \mathcal{A}} A_{\alpha} = \bigcup_{\alpha \in \mathcal{A}} (X - A_{\alpha})$.

Let \mathcal{U} be the cofinite topology on \mathbb{R} . By definition, $\emptyset \in \mathcal{U}$. Since $\mathbb{R} - \mathbb{R} = \emptyset$ is finite, $\mathbb{R} \in \mathcal{U}$.

Suppose that $\{U_{\alpha}\}_{\alpha \in \mathcal{A}} \subseteq \mathcal{U}$. If all $U_{\alpha} = \emptyset$, then $\bigcup_{\alpha \in \mathcal{A}} U_{\alpha} = \emptyset \in \mathcal{U}$. Otherwise, $U_{\beta} \neq \emptyset$ for some $\beta \in \mathcal{A}$. We have $U_{\beta} \subseteq \bigcup_{\alpha \in \mathcal{A}} U_{\alpha}$, so $\mathbb{R} - \bigcup_{\alpha \in \mathcal{A}} U_{\alpha} \subseteq \mathbb{R} - U_{\beta}$. The latter is finite, hence so is $\mathbb{R} - \bigcup_{\alpha \in \mathcal{A}} U_{\alpha}$, so $\bigcup_{\alpha \in \mathcal{A}} U_{\alpha} \in \mathcal{U}$. [Or one can use DeMorgan here: $\mathbb{R} - \bigcup_{\alpha \in \mathcal{A}} U_{\alpha} = \bigcap_{\alpha \in \mathcal{A}} (\mathbb{R} - U_{\alpha}) \subseteq \mathbb{R} - U_{\beta}$ is finite.]

Suppose that $\{U_i\}_{i=1}^n \subseteq \mathcal{U}$. If some $U_k = \emptyset$, then $\bigcap_{i=1}^n U_i = \emptyset \in \mathcal{U}$. Otherwise, each $\mathbb{R} - U_i$ is finite, and $\mathbb{R} - \bigcap_{i=1}^n U_i = \bigcup_{i=1}^n (\mathbb{R} - U_i)$ is a union of finite sets, so is finite. Therefore $\bigcap_{i=1}^n U_i \in \mathcal{U}$.

20. Define $\mathcal{A} = \{ U \subset \mathbb{R} \mid U \text{ is finite} \} \cup \{\mathbb{R}\}$. Verify that \mathcal{A} satisfies two of the three properties to be a topology on \mathbb{R} , but not the other one.

 \emptyset is finite, and $\mathbb{R} \in \mathcal{A}$ by definition.

Suppose that $\{U_i\}_{i=1}^n \subseteq \mathcal{A}$. If all $U_k = \mathbb{R}$, then then $\bigcap_{i=1}^n U_i = \mathbb{R} \in \mathcal{A}$. Otherwise, some U_k is finite, and $\bigcap_{i=1}^n U_i \subseteq U_k$ so $\bigcap_{i=1}^n U_i$ is finite and hence is in \mathcal{A} .

The union condition fails: For $n \in \mathbb{Z}$, $\{n\} \in \mathcal{A}$, but $\bigcup_{n \in \mathbb{Z}} \{n\} = \mathbb{Z} \notin \mathcal{A}$.

21. Define $\mathcal{A} = \{ U \subset \mathbb{R} \mid \forall x \in U, \exists a, b \in \mathbb{R}, \text{ either } x \in [a, b) \subseteq U \text{ or } x \in (a, b] \subseteq U \}.$ Verify that \mathcal{A} satisfies two of the three properties to be a topology on \mathbb{R} , but not the other one.

 $\emptyset \in \mathcal{A}$ since it vacuously satisfies the condition to be in \mathcal{A} . Let $x \in \mathbb{R}$. Then $x \in [x, x+1) \subseteq \mathbb{R}$, showing that $\mathbb{R} \in \mathcal{A}$.

Suppose that $\{U_{\alpha}\}_{\alpha \in \mathcal{A}} \subseteq \mathcal{A}$. Let $x \in \bigcup_{\alpha \in \mathcal{A}} U_{\alpha}$. Then $x \in U_{\beta}$ for some β . Since $U_{\beta} \in \mathcal{A}$, there exist $a, b \in \mathbb{R}$ such that either $x \in [a, b) \subseteq U_{\beta}$ or $x \in (a, b] \subseteq U_{\beta}$. Since $U_{\beta} \subseteq \bigcup_{\alpha \in \mathcal{A}} U_{\alpha}$, either $x \in [a, b) \subseteq \bigcup_{\alpha \in \mathcal{A}} U_{\alpha}$ or $x \in (a, b] \subseteq \bigcup_{\alpha \in \mathcal{A}} U_{\alpha}$.

The intersection condition fails: [0,1) and (-1,0] are in \mathcal{A} , but $[0,1) \cap (-1,0] = \{0\}$ is not in in \mathcal{A} . [To check this, if $0 \in [a,b)$ then b > 0 so $[a,b) \not\subseteq \{0\}$, and if $0 \in (a,b]$, then a < 0 so $(a,b] \not\subseteq \{0\}$.] 22. Let $X = \mathbb{Q}$, the set of rational numbers, with the subspace topology as a subset of \mathbb{R} . Prove that if U is any nonempty open subset of \mathbb{Q} , then there exist nonempty open subsets U_1 and U_2 such that $U = U_1 \cup U_2$ and $U_1 \cap U_2 = \emptyset$. Notice that this appears not to be true for the standard topology on \mathbb{R} (and indeed it is not true).

Let U be a nonempty open set, and choose $x_0 \in U$. Now $U = V \cap \mathbb{Q}$ for some open set V in \mathbb{R} . Since V is open, there exists $\epsilon > 0$ such that $(x_0 - \epsilon, x_0 + \epsilon) \subset V$, and hence $(x_0 - \epsilon, x_0 + \epsilon) \cap \mathbb{Q} \subset U$. Choose a rational number r with $r \in (x_0, x_0 + \epsilon) \cap \mathbb{Q}$, and choose an irrational number s with $x_0 < s < r$. Let $V_1 = (-\infty, s) \cap \mathbb{Q}$ and $V_2 = (s, \infty) \cap \mathbb{Q}$. These are open in the subspace topology on \mathbb{Q} , and $V_1 \cup V_2 = (((-\infty, s) \cap \mathbb{Q}) \cup ((s, \infty) \cap \mathbb{Q})) = ((-\infty, s) \cup (s, \infty)) \cap \mathbb{Q} = (\mathbb{R} - \{s\}) \cap \mathbb{Q} = \mathbb{Q}$. For i = 1, 2, let $U_i = V_i \cap U$. Since $x_0 \in U_1$ and $r \in U_2$, U_1 and U_2 are nonempty. We also have $U_1 \cup U_2 = (V_1 \cup V_2) \cap U = \mathbb{Q} \cap U = U$, and $U_1 \cap U_2 \subseteq (-\infty, s) \cap (s, \infty) = \emptyset$.

23. Let X be a set and let \mathcal{B} be a collection of subsets of X. Define $\mathcal{U} = \{U \subseteq X \mid \forall x \in U, \exists B \in \mathcal{B}, x \in B \subseteq U\}$. Prove that $U \in \mathcal{U}$ if and only if U is a union of elements of \mathcal{B} .

Suppose that $U \in \mathcal{U}$. For each $x \in U$, choose $B_x \in \mathcal{B}$ satisfying $x \in B_x \subseteq U$. Then $U \subseteq \bigcup_{x \in U} \{x\} \subseteq \bigcup_{x \in U} B_x \subseteq U$, so $U = \bigcup_{x \in U} B_x$.

Suppose that $U = \bigcup_{\gamma \in \mathcal{G}} B_{\gamma}$ where each $B_{\gamma} \in \mathcal{B}$. Let $x \in U$. Then $x \in B_{\delta}$ for some $\delta \in \mathcal{G}$, and $x \in B_{\delta} \subseteq U$.

24. Let X be a set and let B be a collection of subsets of X. We say that B is a basis if it satisfies:
B1. X = ∪_{B∈B}B.
B2. ∀B₁, B₂ ∈ B, ∀x ∈ B₁ ∩ B₂, ∃B ∈ B, x ∈ B ⊆ B₁ ∩ B₂.
Define U = {U ⊆ X | ∀x ∈ U, ∃B ∈ B, x ∈ B ⊆ U}. Prove that if B is a basis, then U is a topology on X.

Since $X = \bigcup_{B \in \mathcal{B}} B$, Problem 23 shows that $X \in \mathcal{U}$. The empty set \emptyset vacuously satisfies the condition $\forall x \in \emptyset, \exists B \in \mathcal{B}, x \in B \subseteq U$, so $\emptyset \in \mathcal{U}$.

Suppose $U_{\alpha} \in \mathcal{U}$ for $\alpha \in \mathcal{A}$. Let $x \in \bigcup_{\alpha \in \mathcal{A}} U_{\alpha}$. Then $x \in U_{\beta}$ for some $\beta \in \mathcal{A}$. There exists $B \in \mathcal{B}$ such that $x \in B \subseteq U_{\beta} \subseteq \bigcup_{\alpha \in \mathcal{A}}$. Therefore $\bigcup_{\alpha \in \mathcal{A}} \in \mathcal{U}$.

For T3, it suffices to show that the intersection of any two elements of \mathcal{U} is in \mathcal{U} . Suppose that $U, V \in \mathcal{U}$, and that $x \in U \cap V$. Choose $B_U, B_V \in \mathcal{B}$ such that $x \in B_U \subseteq U$ and $x \in B_V \subseteq V$. There exists $B \in \mathcal{B}$ such that $x \in B \subseteq B_U \cap B_v \subseteq U \cap V$. Therefore $U \cap V \in \mathcal{B}$.

- 25. Let X be a topological space and let \mathcal{B} be a basis for the topology on X. Let $A \subset X$, and define $\mathcal{B}_A = \{B \cap A \mid B \in \mathcal{B}\}.$
 - a. Prove that \mathcal{B}_A is a basis.
 - b. Prove that \mathcal{B}_A generates the subspace topology on A.

For B1, let $a \in A$. Since \mathcal{B} is a basis, there exists $B_a \in \mathcal{B}$ such $a \in B_a$. Then, $a \in B_a \cap A \in \mathcal{B}_A$. Since each element of \mathcal{B}_A is a subset of A, this proves that $A \subseteq \bigcup_{a \in A} B_a \subseteq \bigcup_{B \in \mathcal{B}_A} B \subseteq A$, so $A = \bigcup_{B \in \mathcal{B}_A} B$.

For B2, let $B_1, B_2 \in \mathcal{B}_A$, and let $a \in B_1 \cap B_2$. There exist basis elements $B'_1, B'_2 \in \mathcal{B}$ such that $B_1 = B'_1 \cap A$ and $B_2 = B'_2 \cap A$. Since $a \in B_1 \cap B_2 \subseteq B'_1 \cap B'_2$, and \mathcal{B} is a basis, there exists $B' \in \mathcal{B}$ such that $a \in B' \subseteq B'_1 \cap B'_2$. So $a \in B' \cap A \subseteq (B'_1 \cap B'_2) \cap A = (B'_1 \cap A) \cap (B'_2 \cap A) = B_1 \cap B_2$.

To show that \mathcal{B}_A generates the subspace topology, let \mathcal{U} be the subspace topology and let \mathcal{U}_A be the topology generated by \mathcal{B}_A .

Suppose that $U \in \mathcal{U}$. Let $a \in U$. There exists V open in X with $U = V \cap A$. Since $a \in V$ and \mathcal{B} is a basis for the topology on X, there exists $B' \in \mathcal{B}$ such that $a \in B' \subseteq V$. So $a \in B' \cap A \subseteq V \cap A = U$, and $B' \cap A \in \mathcal{B}_A$. This proves that $\mathcal{U} \subseteq \mathcal{U}_A$.

Suppose that $U \in \mathcal{U}_A$. For every $a \in U$, choose $B_a \in \mathcal{B}_A$ with $x \in B_a \in U$. Each $B_a = B'_a \cap A$ for some $B'_a \in \mathcal{B}$. Let $V = \bigcup_{a \in A} B'_a$; it is a union of open sets in X, so is open in X. We have $V \cap A = (\bigcup_{a \in A} B'_a) \cap A = \bigcup_{a \in A} (B'_a \cap A) = \bigcup_{a \in A} B_a = U$, so $U \in \mathcal{U}$.

We conclude that $\mathcal{U} = \mathcal{U}_A$.