Math 4853 homework

35. Let $f: X \rightarrow Y$ be a function between topological spaces. Let Z be a subset of Y such that $f(X) \subseteq Z$, and define $g: X \rightarrow Z$ by $g(x)=f(x)$. We say that g is obtained from f by restriction of the codomain. Assuming, of course, that Z has the subspace topology as a subspace of Y, prove that f is continuous if and only if g is. (Moral of the story: It's OK to be careless about codomains.)

Assume first that g is comtinous. Then f is the composition of g followed by the inclusion of Z into Y, so f is also continuous.

Assume now that f is continuous, and let U be open in Z. Then $U=Z \cap V$ for some open subset in Y. We have $x \in g^{-1}(U)$ if and only if $g(x) \in U$ if and only if $f(x) \in U$ if and only if $x \in f^{-1}(V)$, so $g^{-1}(U)=f^{-1}(V)$. Since f is continuous, $f^{-1}(V)$ is open, and therefore $g^{-1}(U)$ is open.
36. Prove that the continuous bijection $f:[0,2 \pi) \rightarrow S^{1}$ defined by $f(t)=(\cos (t), \sin (t))$ is not a homeomorphism.

We must show that $f^{-1}: S^{1} \rightarrow[0,2 \pi)$ is not continuous. Let $U=(\infty, \pi) \cap[0,2 \pi)$, an open subset of $[0,2 \pi)$ [note: many other choices of U are possible in the argument]. Now $\left(f^{-1}\right)^{-1}(U)=f(U)$ is the set of points in S^{1} with y-coordinate positive, together with the point $(1,0)$. But if V is any open set in \mathbb{R}^{2} containing $(1,0)$, then V contains an open ball around $(1,0)$ and hence $V \cap S^{1}$ contains points of S^{1} below the x-axis. So $f(U)$ is not open in S^{1} and therefore f^{-1} is not continuous.
37. (a) Let \mathcal{C} be the cofinite topology on \mathbb{R}. Prove that if $f^{-1}(\{r\})$ finite for every $r \in \mathbb{R}$, then $f:(\mathbb{R}, \mathcal{C}) \rightarrow(\mathbb{R}, \mathcal{C})$ is continuous. [You will need to use the fact that if $g: X \rightarrow Y$ is a function and $S \subseteq Y$, then $g^{-1}(Y-S)=X-g^{-1}(S)$, which you should check if it is not clear to you.]
(b) Examine the converse of part (a).

Assume that $f^{-1}(\{r\})$ finite for every $r \in \mathbb{R}$. Let U be open in the cofinite toplogy. If U is empty, then so is $f^{-1}(U)$, so we may assume that U is nonempty, say $U=\mathbb{R}-F$ for a finite set F. For each $r \in F, f^{-1}(\{r\})$ is a finite set F_{r}, so $f^{-1}(F)=\cup_{r \in F} F_{r}$ is finite. We have $f^{-1}(U)=f^{-1}(\mathbb{R}-F)=\mathbb{R}-f^{-1}(F)$, so $f^{-1}(U)$ is open.

For the converse, suppose that f is continuous, and consider the sets open sets $\mathbb{R}-\{r\}$. Each $f^{-1}(\mathbb{R}-\{r\})$ is open, that is $\mathbb{R}-f^{-1}(\{r\})$ is open. If for some r this is empty, then $f^{-1}(\{r\})=\mathbb{R}$ so f is constant. Otherwise, $f^{-1}(\{r\})$ is finite for every r. So the converse of the previous part is not quite true. A correct statement is: $f:(\mathbb{R}, \mathcal{C}) \rightarrow(\mathbb{R}, \mathcal{C})$ is continuous if and only if either f is constant or $\forall r \in \mathbb{R}, f^{-1}(\{r\})$ is finite.
38. (not to turn in) Work through the following step-by-step argument proving that the following are equivalent for a bijection $\phi: X \rightarrow Y$ between topological spaces:
(i) ϕ is a homeomorphism.
(ii) U is open in X if and only if $\phi(U)$ is open in Y.

First, we observe that if $\phi: X \rightarrow Y$ is a bijection, and $A \subseteq X$, then $\left(\phi^{-1}\right)^{-1}(A)=\phi(A)$. For we have $x \in\left(\phi^{-1}\right)^{-1}(U) \Leftrightarrow \phi^{-1}(x) \in U \Leftrightarrow x=\phi\left(\phi^{-1}(x)\right) \in \phi(U)$.

Assume (i). Suppose first that U is open in X. Then $\phi(U)=\left(\phi^{-1}\right)^{-1}(U)$ is open in Y, since ϕ^{-1} is continuous. Suppose now that $\phi(U)$ is open in Y. Then $U=\phi^{-1}(\phi(U))$ is open in X, since ϕ is continuous.

Now assume (ii). Let V be open in Y. Since $V=\phi\left(\phi^{-1}(V)\right)$, (ii) implies that $\phi^{-1}(V)$ is open in X, so ϕ is continuous. Let U be open in X. Then $\left(\phi^{-1}\right)^{-1}(U)=\phi(U)$, which is open by (ii). Therefore ϕ^{-1} is continuous.
39. In \mathbb{R}, let $\mathcal{S}=\{(a, \infty) \mid a \in \mathbb{R}\} \cup\{(-\infty, b) \mid b \in \mathbb{R}\}$. Prove that \mathcal{S} is a sub-basis that generates the standard topology. Find a similar sub-basis for the lower-limit topology.

We first note that $\cap_{i=1}^{m}\left(a_{i}, \infty\right)=(a, \infty)$ where $a=\max \left\{a_{i}\right\}$, and similarly $\cap_{i=1}^{n}\left(-\infty, b_{j}\right)=$ $(-\infty, b)$ where $b=\min \left\{b_{j}\right\}$. So any finite intersection $S_{1} \cap \cdots \cap S_{n}$ of elements of \mathcal{S} can be expressed as $(a, \infty) \cap(-\infty, b)=(a, b)$. That is, the basis $\mathcal{B}=\left\{S_{1} \cap \cdots \cap S_{n} \mid S_{i} \in \mathcal{S}\right\}$ equals $\{(a, b) \mid a, b \in \mathbb{R}\}$, one of the known bases for the standard topology on \mathbb{R}.
40. Let \mathcal{B}_{X} and \mathcal{B}_{Y} be bases for the topologies of two spaces X and Y. Prove that $\left\{B_{1} \times\right.$ $\left.B_{2} \mid B_{1} \in \mathcal{B}_{X}, B_{2} \in \mathcal{B}_{Y}\right\}$ is a basis for the product topology on $X \times Y$.

It suffices to verify the hypotheses of the Basis Recognition Theorem. Each element of \mathcal{B}_{X} is open in X and similarly for \mathcal{B}_{Y}, so each $B_{1} \times B_{2}$ is open in $X \times Y$. Let W be an open subset of $X \times Y$, and let $\left(x_{0}, y_{0}\right) \in W$. Then there exists a basis open set $U \times V$ with $\left(x_{0}, y_{0}\right) \in U \times V \subset W$. Now, $x_{0} \in U$, an open subset of X, so there exists a basic open set $B_{1} \in \mathcal{B}_{X}$ with $x_{0} \in B_{1} \subseteq U$. Similarly there exists $B_{2} \in \mathcal{B}_{Y}$ with $y_{0} \in B_{2} \subseteq V$. So we have $\left(x_{0}, y_{0}\right) \in B_{1} \times B_{2} \subseteq U \times V \subset W$.
41. (4/2) Let $f: X \rightarrow Y$ be a function. Recall that the graph of f is the subset $\Gamma_{f} \subset X \times Y$ defined by $\Gamma_{f}=\{(x, y) \mid f(x)=y\}$. Assume that X is a topological space and that Y is a Hausdorff topological space, which means that if y_{1} and y_{2} are any two points of Y, then there are disjoint open sets U_{1} and U_{2} in Y with $y_{1} \in U_{1}$ and $y_{2} \in U_{2}$. Prove that if f is continuous, then the complement $X \times Y-\Gamma_{f}$ of Γ_{f} is an open subset of $X \times Y$. Hint: Write $W=X \times Y-\Gamma_{f}$. It suffices to show that if $\left(x_{0}, y_{0}\right) \in W$, then there is a basic open set W^{\prime} with $\left(x_{0}, y_{0}\right) \in W^{\prime} \subseteq W$. Since $\left(x_{0}, y_{0}\right) \in W, f\left(x_{0}\right) \neq y_{0}$ and therefore there are disjoint open sets V_{1} and V_{2} in Y with $f\left(x_{0}\right) \in V_{1}$ and $y_{0} \in V_{2}$. Now examine $W^{\prime}=f^{-1}\left(V_{1}\right) \times V_{2}$ (draw a picture!).

Write $W=X \times Y-\Gamma_{f}$. It suffices to show that if $\left(x_{0}, y_{0}\right) \in W$, then there is a basic open set W^{\prime} with $\left(x_{0}, y_{0}\right) \in W^{\prime} \subseteq W$. It suffices to show that if $\left(x_{0}, y_{0}\right) \in W$, then there is a basic open set W^{\prime} with $\left(x_{0}, y_{0}\right) \in W_{\left(x_{0}, y_{0}\right)} \subseteq W$. Since $\left(x_{0}, y_{0}\right) \in W, f\left(x_{0}\right) \neq y_{0}$ and
therefore there are disjoint open sets V_{1} and V_{2} in Y with $f\left(x_{0}\right) \in V_{1}$ and $y_{0} \in V_{2}$. Since f is continuous, $f^{-1}\left(V_{1}\right)$ is open in X. Let $W^{\prime}=f^{-1}\left(V_{1}\right) \times V_{2}$, a basic open subset of $X \times Y$. We have $\left(x_{0}, y_{0}\right) \in W^{\prime}$, since $f\left(x_{0}\right) \in V_{1}$ and $y_{0} \in V_{2}$. To show that $W^{\prime} \subseteq W$, we will show that $W^{\prime} \cap \Gamma_{f}=\emptyset$. Suppose that $(x, y) \in W^{\prime}$. Then $x \in f^{-1}\left(V_{1}\right)$ so $f(x) \in V_{1}$ and therefore $f(x) \notin V_{2}$. On the other hand, $y \in V_{2}$, so $y \neq f(x)$. Therefore $(x, y) \notin \Gamma_{f}$.
42. Let $X \times Y$ be a product of topological spaces. Prove that for each $x_{0} \in X$, the subspace $\left\{x_{0}\right\} \times Y$ is homeomorphic to Y. Show, in fact, that the restriction π of the projection function $\pi_{Y}: X \times Y \rightarrow Y$ is a homeomorphism. Hint: Let $j: Y \rightarrow\left\{x_{0}\right\} \times Y$ be defined by $j(y)=\left(x_{0}, y\right)$. Observe that j is an inverse function to π, hence π is bijective. Give a simple reason why π is continuous, and apply a theorem to show that j is continuous. (Of course, the same kind of arguments would show that each $X \times\left\{y_{0}\right\}$ is homeomorphic to X.)

Let $\pi=\left.\pi_{Y}\right|_{\left\{x_{0}\right\} \times Y}:\left\{x_{0}\right\} \times Y \rightarrow Y$. The function $j: Y \rightarrow\left\{x_{0}\right\} \times Y$ defined by $j(y)=$ $\left(x_{0}, y\right)$ is an inverse function to π, since $j \circ \pi\left(x_{0}, y\right)=j(y)=\left(x_{0}, y\right)$ and $\pi \circ j(y)=\pi\left(x_{0}, y\right)=y$, so π is bijective. Since π is the restriction of a continuous function, it is continuous. The coordinate function $\pi_{X} \circ j$ is the constant function sending Y to $x_{0} \in X$, so is continuous, while $\pi_{Y} \circ j$ is the identity function on Y. Since the coordinate functions of j are continuous, j is continuous. Therefore π and j are homeomorphisms.

