Math 4853 homework

43. (a) Let $B \subseteq A \subseteq X$. Prove that B is closed in the subspace topology on A if and only if there exists a closed subset $C \subseteq X$ such that $B=C \cap A$.
(b) Prove that if A is a closed subset of X and B is a closed subset of Y, then $A \times B$ is a closed subset of $X \times Y$. Hint: Find a simple description of $X \times Y-A \times B$.
(c) Let $f: X \rightarrow Y$ be a function. Prove that f is continuous if and only if for every closed subset $C \subseteq Y$, the inverse image $f^{-1}(C)$ is closed in X.
(a) Assume that B is closed in A. Then $A-B$ is open in A, so there exists V open in X such that $V \cap A=A-B$. Since V is open in $X, C=X-V$ is closed in X, and $C \cap A=(X-V) \cap A=A-V \cap A=B$. Conversely, assume that there exists C closed in X such that $C \cap A=B$. Since C is closed, $X-C$ is open, and $(X-C) \cap A=A-(C \cap A)=A-B$, so $A-B$ is open in A and therefore B is closed in A.
(b) Observe that $X \times Y-A \times B=((X-A) \times Y) \cup(X \times(Y-B))[$ since $(x, y) \notin$ $A \times B \Leftrightarrow(x \notin A$ or $y \notin B) \Leftrightarrow x \in X-A$ or $y \in Y-B \Leftrightarrow(x, y) \in(X-A) \times Y$ or $(x, y) \in$ $X \times(Y-B)]$. Since A is closed, $X-A$ is open in X and similarly $Y-B$ is open in Y, so $((X-A) \times Y) \cup(X \times(Y-B))$ is a union of two basic open sets and consequently is open.
(c) Assume that f is continuous, and let C be closed in Y. Then $Y-C$ is open, so $f^{-1}(Y-C)=X-f^{-1}(C)$ is open, and therefore $f^{-1}(C)$ is closed. Conversely, assume that $f^{-1}(C)$ is closed for every closed subset C of Y. Let U be open in Y. Then $Y-U$ is closed, so $f^{-1}(Y-U)=X-f^{-1}(U)$ is closed, so $f^{-1}(U)$ is open.
44. Let $S \subset X$.
(a) Prove that $x \in \bar{S}$ if and only if every neighborhood of x contains a point of S.
(b) Prove that S is closed if and only if $S=\bar{S}$.
(c) Prove that $\bar{S}=\cap\{A \subseteq X \mid \mathrm{A}$ is closed and $S \subseteq A\}$.
(d) Let $f: X \rightarrow Y$ be continuous. Prove that $f(\bar{S}) \subseteq \overline{f(S)}$.
(e) Give an example of a continuous surjective function $f: X \rightarrow Y$ and a subset $S \subset X$ such that $f(\bar{S}) \neq \overline{f(S)}$.
(a) Assume that $x \in \bar{S}$. Let U be an open neighborhood of x. If $x \in S$, then U contains the point x of S. If $x \in S^{\prime}$, then $U-\{x\}$ contains a point of S. In either case, U contains a point of S. Conversely, assume that every neighborhood of x contains a point of S. If $x \in S$, then $x \in S \cup S^{\prime}=\bar{S}$. If $x \notin S$, then $x \in S^{\prime}$ since every neighborhood of x contains a point of S, which cannot be x since $x \notin S$. In either case, $x \in \bar{S}$.
(b) Assume that S is closed. Since $S \subset S$, Proposition 2 says that $\bar{S} \subseteq S$. By definition, $S \subseteq S \cup S^{\prime}=\bar{S}$. Therefore $S=\bar{S}$. Conversely, assume that $S=\bar{S}$. By Propostiion $1, \bar{S}$ and therefore S are closed.
(c) If A is any closed set with $S \subseteq A$, then by Proposition $2, \bar{S} \subseteq A$. Therefore $\bar{S} \subseteq \cap\{A \subseteq X \mid \mathrm{A}$ is closed and $S \subseteq A\}$. On the other hand, \bar{S} is a closed set that contains S, so is among the sets in the collection being intersected in the expression $\cap\{A \subseteq$ $X \mid$ A is closed and $S \subseteq A\}$. Therefore $\cap\{A \subseteq X \mid \mathrm{A}$ is closed and $S \subseteq A\} \subseteq \bar{S}$.
(d) Let $x \in \bar{S}$. Let U be any neighborhood of $f(x)$. Then $f^{-1}(U)$ is open and $x \in f^{-1}(U)$. Since $x \in \bar{S}, f^{-1}(U)$ must contain a point s of S. Then, $f(s) \in f(S) \cap U$. We have shown that every neighborhood of $f(x)$ contains a point of $f(S)$, so by part (a), $f(x) \in \overline{f(S)}$.
(e) Example 1: Let $X=(-2,-1) \cup[1,2], Y=[1,4]$, and $f: X \rightarrow Y$ be define by $f(x)=x^{2}$. Then $f(\overline{(-2,-1)})=f((-2,-1))=(1,4) \neq \overline{(1,4)}=f((-2,-1))$.

Example 2: Let $X=[0,2 \pi), Y=S^{1}$, and $f: X \rightarrow Y$ be $f(t)=(\cos (t), \sin (t))$. Let $S=[\pi, 2 \pi)$, which is closed in X. The image $f(S)$ is not closed in Y, so $f(\bar{S})=f(S) \neq \overline{f(S)}$.

Example 3: Let $X=\mathbb{R}^{2}$ and $Y=\mathbb{R}$, and let $\pi: X \rightarrow Y$ be projection to the first coordinate. Let $S=\{(x, y) \mid x \neq 0$ and $y=1 / x\}$. Then S is closed in X, but $\pi(S)=\mathbb{R}-\{0\}$ is not closed in Y, so $f(\bar{S})=f(S) \neq \overline{f(S)}$.
45. Let X be \mathbb{R} with the lower-limit topology, and let A be the subspace $[0,1]$ of X. Give an example of a continuous unbounded function from A to \mathbb{R}.

Define $f: X \rightarrow \mathbb{R}$ by $f(x)=1 /(1-x)$ if $x<1$ and $f(x)=0$ if $x \geq 1$. This is continuous, since for every x_{0}, the limit from the right $\lim _{x \rightarrow x_{0}^{+}}$equals $f\left(x_{0}\right)$. Let $f_{A}: A \rightarrow \mathbb{R}$ be the restriction of f. Then f_{A} is continuous, since it is the restriction of a continuous function to a subspace, and f_{A} is unbounded.
46. Let $X=\{1 / n \mid n \in \mathbb{N}\} \cup\{0\}$, a subspace of \mathbb{R}. Prove that every continuous function $f: X \rightarrow \mathbb{R}$ is bounded, by considering the open set $V=(f(0)-1, f(0)+1)$.

Let $V=f^{-1}((f(0)-1, f(0)+1))$. Since f is continuous, this is an open neighborhood of 0 in X. Since it is open in X, it must contain $(-\epsilon, \epsilon) \cap X$ for some $\epsilon>0$. Choose N with $1 / N<\epsilon$, and let $M=\max \{f(0)+1, f(1), f(1 / 2), \ldots, f(1 / N)\}$. We claim that M is an upper bound for $f(X)$. Let $y \in f(X)$. If $y=f(0)$, then $f(0)<f(0)+1 \leq M$. If $y=f(1 / n)$ for $n<N$, then $f(1 / n) \in\{f(0)+1, f(1), f(1 / 2), \ldots, f(1 / N)\}$ so $f(1 / n) \leq M$. Finally, if $y=$ $f(1 / n)$ for $n \geq N$, then $1 / n \in(-\epsilon, \epsilon) \cap X \subseteq f^{-1}(V)$, so $f(1 / n) \in V$ and therefore $f(1 / n)<$ $f(0)+1 \leq M$. In any case, $y \leq M$. Similarly, $\min \{f(0)-1, f(1), f(1 / 2), \ldots, f(1 / N)\}$ is a lower bound for $f(X)$.
47. Let X be a topological space. Prove that if X is compact, then every continuous function $f: X \rightarrow \mathbb{R}$ is bounded. Use the open cover $\left\{V_{n}\right\}_{n \in \mathbb{N}}$ of \mathbb{R}, where $V_{n}=(-n, n)$.

For $n \in \mathbb{N}$, define $U_{n}=f^{-1}\left(V_{n}\right)$, nd open subset of X. We have $X=f^{-1}(\mathbb{R})=$ $f^{-1}\left(\cup_{n \in \mathbb{N}} V_{n}\right)=\cup_{n \in \mathbb{N}} f^{-1}\left(V_{n}\right)=\cup_{n \in \mathbb{N}} U_{n}$, so $\left\{U_{n}\right\}_{n \in \mathbb{N}}$ is an open cover of X. Since X is compact, this has a finite subcover, say $\left\{U_{n_{i}}\right\}_{i=1}^{k}$. So $f(X) \subseteq \cup_{i=1}^{k} V_{n_{i}}=V_{N}$ where $N=$ $\max \left\{n_{i}\right\}$. That is, $f(X) \subseteq(-N, N)$ so f is bounded.
48. (4/14) For any set X, the cofinite topology on X is the topology in which a set is open if and only if it is either empty or has finite complement. Prove that any set X with the cofinite topology is compact.

Let X have the cofinite topology. If X is empty, it is compact, so we may assume that X is nonempty. Let $\left\{U_{\alpha}\right\}_{\alpha \in \mathcal{A}}$ be an open cover of X. Some $U_{\alpha_{0}}$ must be nonempty. Write $U_{\alpha_{0}}=X-F$, where F is finite, say $F=\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$. For each i with $1 \leq i \leq k$, choose some $U_{\alpha_{i}}$ with $x_{i} \in U_{\alpha_{i}}$. Then, $\left\{U_{\alpha_{0}}, U_{\alpha_{1}}, \ldots, U_{\alpha_{k}}\right\}$ is a finite subcover of $\left\{U_{\alpha}\right\}_{\alpha \in \mathcal{A}}$. For let x be any element of X. If $x \in F$, say $x=x_{i}$, then $x \in U_{\alpha_{i}}$. If $x \notin F$, then $x \in U_{\alpha_{0}}$.
49. Prove that if A is a compact subset of \mathbb{R}, then A is bounded (i. e. A lies in some interval $[-M, M])$.

For $n \geq 1$, let $U_{n}=A \cap(-n, n)$, and open subset of A. Since A is compact, there exists a finite subcollection of the U_{n} such that $A=\cup_{i=1}^{k} U_{n_{i}}=\cup_{i=1}^{k}\left(A \cap\left(-n_{i}, n_{i}\right)\right)=$ $A \cap\left(\cup_{i=1}^{k}\left(-n_{i}, n_{i}\right)\right)=A \cap(-N, N)$, where $N=\max \left\{n_{1}, \ldots n_{k}\right\}$. So A lies in some finite interval and therefore is bounded.
50. Prove that if A is a compact subset of \mathbb{R}, then A is closed. (Hint: It seems easiest to argue the contrapositive: if A is not closed then it is not compact. If A is not closed, then $A \neq \bar{A}=A \cup A^{\prime}$, so there is some limit point x_{0} of A that is not contained in A. Then...)

We will prove the contrapositive. Assume that A is not closed. Then $A \neq \bar{A}=A \cup A^{\prime}$, so there is some limit point x_{0} of A that is not contained in A. Consider the continuous function $f: \mathbb{R}-\left\{x_{0}\right\} \rightarrow \mathbb{R}$ defined by $f(x)=\frac{1}{x-x_{0}}$, and let $g: A \rightarrow \mathbb{R}$ be the restriction of f to A. We will show that g is unbounded,

Suppose for contradiction that g is bounded. Then there exists M so that $g(A) \subseteq$ $[-M, M]$. We may choose $M>0$. That is, $a \in A$ implies $|g(a)| \leq M$. This says $\frac{1}{\left|a-x_{0}\right|} \leq$ M, so $\left|a-x_{0}\right| \geq \frac{1}{M}$. Therefore there is no point of A in the interval $\left(x_{0}-\frac{1}{M}, x_{0}+\frac{1}{M}\right)$, contradicting the fact that x_{0} is a limit point of A.
[One can obtain the contradiction directly from the definition as follows: For $n \in \mathbb{N}$, let $U_{n}=\left(x_{0}-\frac{1}{n}, x_{0}+\frac{1}{n}\right) \cap A$. Since $x_{0} \notin A$, the U_{n} form an open cover of A, and since $x_{0} \in A^{\prime}$, there is no finite subcover.]

