
Math 4853 homework

43. (a) Let B ⊆ A ⊆ X. Prove that B is closed in the subspace topology on A if and only
if there exists a closed subset C ⊆ X such that B = C ∩ A.
(b) Prove that if A is a closed subset of X and B is a closed subset of Y , then A×B
is a closed subset of X × Y . Hint: Find a simple description of X × Y − A×B.
(c) Let f : X → Y be a function. Prove that f is continuous if and only if for every
closed subset C ⊆ Y , the inverse image f−1(C) is closed in X.

(a) Assume that B is closed in A. Then A − B is open in A, so there exists V open
in X such that V ∩ A = A − B. Since V is open in X, C = X − V is closed in X, and
C ∩A = (X −V )∩A = A−V ∩A = B. Conversely, assume that there exists C closed in X
such that C∩A = B. Since C is closed, X−C is open, and (X−C)∩A = A−(C∩A) = A−B,
so A−B is open in A and therefore B is closed in A.

(b) Observe that X × Y − A × B = ((X − A) × Y ) ∪ (X × (Y − B)) [since (x, y) /∈
A×B ⇔ (x /∈ A or y /∈ B)⇔ x ∈ X −A or y ∈ Y −B ⇔ (x, y) ∈ (X −A)× Y or (x, y) ∈
X × (Y − B)]. Since A is closed, X − A is open in X and similarly Y − B is open in Y , so
((X −A)× Y ) ∪ (X × (Y −B)) is a union of two basic open sets and consequently is open.

(c) Assume that f is continuous, and let C be closed in Y . Then Y − C is open, so
f−1(Y −C) = X − f−1(C) is open, and therefore f−1(C) is closed. Conversely, assume that
f−1(C) is closed for every closed subset C of Y . Let U be open in Y . Then Y −U is closed,
so f−1(Y − U) = X − f−1(U) is closed, so f−1(U) is open.

44. Let S ⊂ X.
(a) Prove that x ∈ S if and only if every neighborhood of x contains a point of S.
(b) Prove that S is closed if and only if S = S.
(c) Prove that S = ∩{A ⊆ X | A is closed and S ⊆ A }.
(d) Let f : X → Y be continuous. Prove that f(S) ⊆ f(S).
(e) Give an example of a continuous surjective function f : X → Y and a subset S ⊂ X
such that f(S) 6= f(S).

(a) Assume that x ∈ S. Let U be an open neighborhood of x. If x ∈ S, then U contains
the point x of S. If x ∈ S ′, then U − {x} contains a point of S. In either case, U contains a
point of S. Conversely, assume that every neighborhood of x contains a point of S. If x ∈ S,
then x ∈ S ∪ S ′ = S. If x /∈ S, then x ∈ S ′ since every neighborhood of x contains a point
of S, which cannot be x since x /∈ S. In either case, x ∈ S.

(b) Assume that S is closed. Since S ⊂ S, Proposition 2 says that S ⊆ S. By definition,
S ⊆ S ∪ S ′ = S. Therefore S = S. Conversely, assume that S = S. By Propostiion 1, S
and therefore S are closed.

(c) If A is any closed set with S ⊆ A, then by Proposition 2, S ⊆ A. Therefore
S ⊆ ∩{A ⊆ X | A is closed and S ⊆ A }. On the other hand, S is a closed set that
contains S, so is among the sets in the collection being intersected in the expression ∩{A ⊆
X | A is closed and S ⊆ A }. Therefore ∩{A ⊆ X | A is closed and S ⊆ A } ⊆ S.



(d) Let x ∈ S. Let U be any neighborhood of f(x). Then f−1(U) is open and x ∈ f−1(U).
Since x ∈ S, f−1(U) must contain a point s of S. Then, f(s) ∈ f(S) ∩ U . We have shown
that every neighborhood of f(x) contains a point of f(S), so by part (a), f(x) ∈ f(S).

(e) Example 1: Let X = (−2,−1) ∪ [1, 2], Y = [1, 4], and f : X → Y be define by
f(x) = x2. Then f((−2,−1)) = f((−2,−1)) = (1, 4) 6= (1, 4) = f((−2,−1)).

Example 2: Let X = [0, 2π), Y = S1, and f : X → Y be f(t) = (cos(t), sin(t)). Let
S = [π, 2π), which is closed in X. The image f(S) is not closed in Y , so f(S) = f(S) 6= f(S).

Example 3: Let X = R2 and Y = R, and let π : X → Y be projection to the first
coordinate. Let S = {(x, y) | x 6= 0 and y = 1/x}. Then S is closed in X, but π(S) = R−{0}
is not closed in Y , so f(S) = f(S) 6= f(S).

45. Let X be R with the lower-limit topology, and let A be the subspace [0, 1] of X. Give
an example of a continuous unbounded function from A to R.

Define f : X → R by f(x) = 1/(1−x) if x < 1 and f(x) = 0 if x ≥ 1. This is continuous,
since for every x0, the limit from the right limx→x+

0
equals f(x0). Let fA : A → R be the

restriction of f . Then fA is continuous, since it is the restriction of a continuous function to
a subspace, and fA is unbounded.

46. Let X = {1/n | n ∈ N} ∪ {0}, a subspace of R. Prove that every continuous function
f : X → R is bounded, by considering the open set V = (f(0)− 1, f(0) + 1).

Let V = f−1((f(0) − 1, f(0) + 1)). Since f is continuous, this is an open neighborhood
of 0 in X. Since it is open in X, it must contain (−ε, ε)∩X for some ε > 0. Choose N with
1/N < ε, and let M = max{f(0)+1, f(1), f(1/2), . . . , f(1/N)}. We claim that M is an upper
bound for f(X). Let y ∈ f(X). If y = f(0), then f(0) < f(0) + 1 ≤ M . If y = f(1/n) for
n < N , then f(1/n) ∈ {f(0) + 1, f(1), f(1/2), . . . , f(1/N)} so f(1/n) ≤ M . Finally, if y =
f(1/n) for n ≥ N , then 1/n ∈ (−ε, ε)∩X ⊆ f−1(V ), so f(1/n) ∈ V and therefore f(1/n) <
f(0) + 1 ≤ M . In any case, y ≤ M . Similarly, min{f(0)− 1, f(1), f(1/2), . . . , f(1/N)} is a
lower bound for f(X).

47. Let X be a topological space. Prove that if X is compact, then every continuous
function f : X → R is bounded. Use the open cover {Vn}n∈N of R, where Vn = (−n, n).

For n ∈ N, define Un = f−1(Vn), nd open subset of X. We have X = f−1(R) =
f−1(∪n∈NVn) = ∪n∈Nf

−1(Vn) = ∪n∈NUn, so {Un}n∈N is an open cover of X. Since X is
compact, this has a finite subcover, say {Uni

}ki=1. So f(X) ⊆ ∪ki=1Vni
= VN where N =

max{ni}. That is, f(X) ⊆ (−N,N) so f is bounded.

48. (4/14) For any set X, the cofinite topology on X is the topology in which a set is open
if and only if it is either empty or has finite complement. Prove that any set X with
the cofinite topology is compact.



Let X have the cofinite topology. If X is empty, it is compact, so we may assume that
X is nonempty. Let {Uα}α∈A be an open cover of X. Some Uα0 must be nonempty. Write
Uα0 = X − F , where F is finite, say F = {x1, x2, . . . , xk}. For each i with 1 ≤ i ≤ k, choose
some Uαi

with xi ∈ Uαi
. Then, {Uα0 , Uα1 , . . . , Uαk

} is a finite subcover of {Uα}α∈A. For let
x be any element of X. If x ∈ F , say x = xi, then x ∈ Uαi

. If x /∈ F , then x ∈ Uα0 .

49. Prove that if A is a compact subset of R, then A is bounded (i. e. A lies in some interval
[−M,M ]).

For n ≥ 1, let Un = A ∩ (−n, n), and open subset of A. Since A is compact, there
exists a finite subcollection of the Un such that A = ∪ki=1Uni

= ∪ki=1(A ∩ (−ni, ni)) =
A ∩ (∪ki=1(−ni, ni)) = A ∩ (−N,N), where N = max{n1, . . . nk}. So A lies in some finite
interval and therefore is bounded.

50. Prove that if A is a compact subset of R, then A is closed. (Hint: It seems easiest to
argue the contrapositive: if A is not closed then it is not compact. If A is not closed,
then A 6= A = A ∪ A′, so there is some limit point x0 of A that is not contained in A.
Then. . .)

We will prove the contrapositive. Assume that A is not closed. Then A 6= A = A ∪ A′,
so there is some limit point x0 of A that is not contained in A. Consider the continuous

function f : R−{x0} → R defined by f(x) =
1

x− x0

, and let g : A→ R be the restriction of

f to A. We will show that g is unbounded,
Suppose for contradiction that g is bounded. Then there exists M so that g(A) ⊆

[−M,M ]. We may choose M > 0. That is, a ∈ A implies |g(a)| ≤M . This says
1

|a− x0|
≤

M , so |a − x0| ≥
1

M
. Therefore there is no point of A in the interval (x0 − 1

M
, x0 + 1

M
),

contradicting the fact that x0 is a limit point of A.
[One can obtain the contradiction directly from the definition as follows: For n ∈ N, let

Un = (x0− 1
n
, x0 + 1

n
)∩A. Since x0 /∈ A, the Un form an open cover of A, and since x0 ∈ A′,

there is no finite subcover.]


