Math 4853 homework

51. Let X be a set with the cofinite topology. Prove that every subspace of X has the
cofinite topology (i. e. the subspace topology on each subset A equals the cofinite
topology on A). Notice that this says that every subset of X is compact. So not every
compact subset of X is closed (unless X is finite, in which case X and all of its subsets
are finite sets with the discrete topology).

Let U be a nonempty open subset of A for the subspace topology. Then U = V N A
for some open subset V of X. Now V = X — F for some finite subset F'. So VNA =
(X—F)NA=ANX)—(ANF)=A—-(ANF). Since AN F is finite, this is open in
the cofinite topology on A. Conversely, suppose that U is an open subset for the cofinite
topology of A. Then U = A — F} for some finite subset F; of A. Then, X — F} is open in
X,and (X — F1)NA=A- Fj, so A— F} is open in the subspace topology.

52. Let X be a Hausdorff space. Prove that every compact subset A of X is closed.
Hint: Let ¢ A. For each a € A, choose disjoint open subsets U, and V, of X such
that x € U, and a € V,. The collection {V, N A} is an open cover of A, so has a
finite subcover {V,, N A} ;. Now, let U = N, U,,, a neighborhood of z. Prove that
U C X — A (draw a picture!), which proves that X — A is open.

To show that X — A is open, it suffices to prove that for each = ¢ A, there exists an open
set U of X withx € U C X — A. Fix some z € X — A. For each a € A, choose disjoint open
subsets U, and V, of X such that x € U, and a € V,. The collection {V, N A} is an open
cover of A, so has a finite subcover {V,, N A} ,. Now, let U = NI ,U,,, a neighborhood of x.
We claim that U C X — A. Suppose for contradiction that y € UN A. Since y € A, y € V,,
for some j. Also, y € U = ML U,, € U,,. This is impossible since U,; and V;; are disjoint.

53. Prove that the only connected nonempty subsets of Q are its one-point subsets.

We will prove that if S is a nonempty connected subset of (), then S contains only one
point, by arguing the contrapositive.

Suppose that S is a subset of QQ that contains more than one point, say a,b € S with a < b.
Choose an irrational number s with a < s < b. Let U = (—o00,s) NS and V = (s,00) N S.
These are disjoint, open in S, nomempty (since a € U and b € V), and their union is S
(since ((—o0,s)NS)U ((s,00)NS) = ((—o0,s)U(s,00)) NS =R—-{s})NS=S5),s0S is
not connected.

[One may one to point out that a one-point subset is connected— this is immediate since
a one-point set cannot admit a surjective function to {1,2}.]

54. Let X be a topological space and let S C X. Prove that if S is connected, then S is
connected.



Let f: S — {1,2} be a continuous function. Then f|s is continuous. Since S is connected,
f|s is constant, say f(S) = 1. Since f is continuous, f(S) C f(S) = {1} = {1}, so f is also
constant.

Alternatively, suppose for contradiction that S = UUV with U and V disjoint nonempty
open subsets. Since S is connected, either UNS or V NS must be empty, say VNS is empty.
Then S C U. Now U is closed in S, since its complement V is open, so S C U. But then,
V' is empty, a contradiction.

55. Let X be an infinite set with the cofinite topology. Prove that X is connected.

Suppose that U and V' were disjoint nonempty sets in X whose union is X. Now U =
X — Fy and V — X — Fy for some finite subsets Fy; and Fy. Since U and V are disjoint,
V C Fy and U C Fy. But then, X = U UV C Fy U Fy would be finite, a contradiction.

56. Suppose A and B are connected subsets of a space X. Prove that if AN B is nonempty,
then AU B is connected.

Suppose that f: AU B — {1,2} is continuous. Since A is connected, f|4 is constant,
say f(A) C {1}. Similarly, f|g is constant, so f(A) C {1} or f(B) C {2}. The latter is
impossible, since there is a point 2o € AN B with f(zg) = 1, so f(B) C {1} and therefore
f(AUB) C {1}. Since every function from AU B to {1,2} is constant, AU B is connected.

Alternatively, suppose that AU B = U UV with U and V disjoint open sets. Since A
is connected, A C U or A C V, say A C U. Similarly, B C U or B C V. The latter is
impossible, since there is a point xg € AN B with o € U, so AU B C U. Therefore V' must
be empty.

57. Let X = C([0,1]), the set of continuous functions from [0, 1] to R. Define p(f,g) =
max,eo1{(1 — 2?)|f(z) — g(x)|}. Verify the triangle inequality. Hint: If F(z) <
G(z) for all x € [0,1], then F'(z) < max,ejo11{G ()} for all z € [0, 1], and therefore
maxgepo,1{F (2)} < max,ep{G(z)}.

let f,g,h € X. For all z € [0, 1], we have

(1 —2%)|f(x) — g(@)] < (1 = 2*)(|f () — h(@)[|n(z) — g(=)])
= (1= 2%)|f(x) = h(z)| + (1 = 2*)|h(z) = g(x)] < p(f, h) + p(h, f)

and therefore p(f,g) < p(f,h) + p(h, f).

58. Let (X, d) be a metric space and let A be a subset of X.

(a) Use continuity of d to prove that if A is compact, then A is closed. Hint: If A is
not closed, there is a limit point z of A that is not contained in A. Consider the
function f: A — R defined by f(x) = 1/d(z, 2).



(b) Prove that X is Hausdorff, and apply Problem 52 to prove if A is compact, then
A is closed.

For (a), suppose that A is not closed. Then there exists a limit point z of A that is not
contained on A. Since d is continuous and d(z, z) > 0 for all x € A, the function f: A — R
defined by f(z) = 1/d(x, z) is continuous. To show that A is not compact, it suffices to show
that f is unbounded. Let M € R be any positive number. Since z is a limit point of A, there
exists a point € AN B(z,1/M). Since d(z,z) < 1/M, f(x) =1/d(z,z) > M. Therefore f
is unbounded.

For (b), let 2,y € X. We will show that B(xz,d(x,y)/2) and B(y,d(z,y)/2) are disjoint
neighborhoods of x and y. If not, then there exists z € B(z,d(x,y)/2) N B(y,d(x,y)/2).
But then, d(z,y) < d(z,z) + d(z,y) < d(x,y)/2 + d(z,y)/2 = d(z,y), a contradiction. We
conclude that X is Hausdorff. By Problem 52, compact subsets of X are closed.

59. Let f: X — Y be continuous. Suppose { z, } is a sequence in X that converges to x.
Prove that { f(x,)} converges to f(x).

Let U be any neighborhood of f(z). Then f~!(U) is a neighborhood of x, so there exists
N such that if n > N then z,, € f~}(U). That is, if n > N, then f(z,) € U.

60. Let X be a Hausdorff space. Prove that limits in X are unique. That is, if {z, } is a
sequence in X and x,, — z and z,, — y, then x = y.

Suppose for contradiction that x,, — = and z,, — y, but x # y. Choose disjoint neigh-
borhoods U of x and V' of y. There exist N; and N, such that if n > N; then z,, € U, and
if n > Ny then z,, € V. So if n > max{Ny, N>}, x,, € U NV, contradicting the fact that U
and V' are disjoint.



