Math 4853 homework

51. Let X be a set with the cofinite topology. Prove that every subspace of X has the cofinite topology (i. e. the subspace topology on each subset A equals the cofinite topology on A). Notice that this says that every subset of X is compact. So not every compact subset of X is closed (unless X is finite, in which case X and all of its subsets are finite sets with the discrete topology).

Let U be a nonempty open subset of A for the subspace topology. Then $U=V \cap A$ for some open subset V of X. Now $V=X-F$ for some finite subset F. So $V \cap A=$ $(X-F) \cap A=(A \cap X)-(A \cap F)=A-(A \cap F)$. Since $A \cap F$ is finite, this is open in the cofinite topology on A. Conversely, suppose that U is an open subset for the cofinite topology of A. Then $U=A-F_{1}$ for some finite subset F_{1} of A. Then, $X-F_{1}$ is open in X, and $\left(X-F_{1}\right) \cap A=A-F_{1}$, so $A-F_{1}$ is open in the subspace topology.
52. Let X be a Hausdorff space. Prove that every compact subset A of X is closed. Hint: Let $x \notin A$. For each $a \in A$, choose disjoint open subsets U_{a} and V_{a} of X such that $x \in U_{a}$ and $a \in V_{a}$. The collection $\left\{V_{a} \cap A\right\}$ is an open cover of A, so has a finite subcover $\left\{V_{a_{i}} \cap A\right\}_{i=1}^{n}$. Now, let $U=\cap_{i=1}^{n} U_{a_{i}}$, a neighborhood of x. Prove that $U \subset X-A$ (draw a picture!), which proves that $X-A$ is open.

To show that $X-A$ is open, it suffices to prove that for each $x \notin A$, there exists an open set U of X with $x \in U \subseteq X-A$. Fix some $x \in X-A$. For each $a \in A$, choose disjoint open subsets U_{a} and V_{a} of X such that $x \in U_{a}$ and $a \in V_{a}$. The collection $\left\{V_{a} \cap A\right\}$ is an open cover of A, so has a finite subcover $\left\{V_{a_{i}} \cap A\right\}_{i=1}^{n}$. Now, let $U=\cap_{i=1}^{n} U_{a_{i}}$, a neighborhood of x. We claim that $U \subseteq X-A$. Suppose for contradiction that $y \in U \cap A$. Since $y \in A, y \in V_{a_{j}}$ for some j. Also, $y \in U=\cap_{i=1}^{n} U_{a_{i}} \subseteq U_{a_{j}}$. This is impossible since $U_{a_{j}}$ and $V_{a_{j}}$ are disjoint.
53. Prove that the only connected nonempty subsets of \mathbb{Q} are its one-point subsets.

We will prove that if S is a nonempty connected subset of Q, then S contains only one point, by arguing the contrapositive.

Suppose that S is a subset of \mathbb{Q} that contains more than one point, say $a, b \in S$ with $a<b$. Choose an irrational number s with $a<s<b$. Let $U=(-\infty, s) \cap S$ and $V=(s, \infty) \cap S$. These are disjoint, open in S, nomempty (since $a \in U$ and $b \in V$), and their union is S (since $((-\infty, s) \cap S) \cup((s, \infty) \cap S)=((-\infty, s) \cup(s, \infty)) \cap S=(\mathbb{R}-\{s\}) \cap S=S)$, so S is not connected.
[One may one to point out that a one-point subset is connected- this is immediate since a one-point set cannot admit a surjective function to $\{1,2\}$.]
54. Let X be a topological space and let $S \subseteq X$. Prove that if S is connected, then \bar{S} is connected.

Let $f: \bar{S} \rightarrow\{1,2\}$ be a continuous function. Then $\left.f\right|_{S}$ is continuous. Since S is connected, $\left.f\right|_{S}$ is constant, say $f(S)=1$. Since f is continuous, $f(\bar{S}) \subseteq \overline{f(S)}=\overline{\{1\}}=\{1\}$, so f is also constant.

Alternatively, suppose for contradiction that $\bar{S}=U \cup V$ with U and V disjoint nonempty open subsets. Since S is connected, either $U \cap S$ or $V \cap S$ must be empty, say $V \cap S$ is empty. Then $S \subset U$. Now U is closed in \bar{S}, since its complement V is open, so $\bar{S} \subset U$. But then, V is empty, a contradiction.
55. Let X be an infinite set with the cofinite topology. Prove that X is connected.

Suppose that U and V were disjoint nonempty sets in X whose union is X. Now $U=$ $X-F_{U}$ and $V-X-F_{V}$ for some finite subsets F_{U} and F_{V}. Since U and V are disjoint, $V \subset F_{U}$ and $U \subset F_{V}$. But then, $X=U \cup V \subseteq F_{V} \cup F_{U}$ would be finite, a contradiction.
56. Suppose A and B are connected subsets of a space X. Prove that if $A \cap B$ is nonempty, then $A \cup B$ is connected.

Suppose that $f: A \cup B \rightarrow\{1,2\}$ is continuous. Since A is connected, $\left.f\right|_{A}$ is constant, say $f(A) \subseteq\{1\}$. Similarly, $\left.f\right|_{B}$ is constant, so $f(A) \subseteq\{1\}$ or $f(B) \subseteq\{2\}$. The latter is impossible, since there is a point $x_{0} \in A \cap B$ with $f\left(x_{0}\right)=1$, so $f(B) \subseteq\{1\}$ and therefore $f(A \cup B) \subseteq\{1\}$. Since every function from $A \cup B$ to $\{1,2\}$ is constant, $A \cup B$ is connected.

Alternatively, suppose that $A \cup B=U \cup V$ with U and V disjoint open sets. Since A is connected, $A \subseteq U$ or $A \subseteq V$, say $A \subseteq U$. Similarly, $B \subseteq U$ or $B \subseteq V$. The latter is impossible, since there is a point $x_{0} \in A \cap B$ with $x_{0} \in U$, so $A \cup B \subseteq U$. Therefore V must be empty.
57. Let $X=C([0,1])$, the set of continuous functions from $[0,1]$ to \mathbb{R}. Define $\rho(f, g)=$ $\max _{x \in[0,1]}\left\{\left(1-x^{2}\right)|f(x)-g(x)|\right\}$. Verify the triangle inequality. Hint: If $F(x) \leq$ $G(x)$ for all $x \in[0,1]$, then $F(x) \leq \max _{x \in[0,1]}\{G(x)\}$ for all $x \in[0,1]$, and therefore $\max _{x \in[0,1]}\{F(x)\} \leq \max _{x \in[0,1]}\{G(x)\}$.
let $f, g, h \in X$. For all $x \in[0,1]$, we have

$$
\begin{aligned}
& \left(1-x^{2}\right)|f(x)-g(x)| \leq\left(1-x^{2}\right)(|f(x)-h(x)||h(x)-g(x)|) \\
= & \left(1-x^{2}\right)|f(x)-h(x)|+\left(1-x^{2}\right)|h(x)-g(x)| \leq \rho(f, h)+\rho(h, f)
\end{aligned}
$$

and therefore $\rho(f, g) \leq \rho(f, h)+\rho(h, f)$.
58. Let (X, d) be a metric space and let A be a subset of X.
(a) Use continuity of d to prove that if A is compact, then A is closed. Hint: If A is not closed, there is a limit point z of A that is not contained in A. Consider the function $f: A \rightarrow \mathbb{R}$ defined by $f(x)=1 / d(x, z)$.
(b) Prove that X is Hausdorff, and apply Problem 52 to prove if A is compact, then A is closed.

For (a), suppose that A is not closed. Then there exists a limit point z of A that is not contained on A. Since d is continuous and $d(x, z)>0$ for all $x \in A$, the function $f: A \rightarrow \mathbb{R}$ defined by $f(x)=1 / d(x, z)$ is continuous. To show that A is not compact, it suffices to show that f is unbounded. Let $M \in \mathbb{R}$ be any positive number. Since z is a limit point of A, there exists a point $x \in A \cap B(z, 1 / M)$. Since $d(x, z)<1 / M, f(x)=1 / d(x, z)>M$. Therefore f is unbounded.

For (b), let $x, y \in X$. We will show that $B(x, d(x, y) / 2)$ and $B(y, d(x, y) / 2)$ are disjoint neighborhoods of x and y. If not, then there exists $z \in B(x, d(x, y) / 2) \cap B(y, d(x, y) / 2)$. But then, $d(x, y) \leq d(x, z)+d(z, y) \leq d(x, y) / 2+d(x, y) / 2=d(x, y)$, a contradiction. We conclude that X is Hausdorff. By Problem 52, compact subsets of X are closed.
59. Let $f: X \rightarrow Y$ be continuous. Suppose $\left\{x_{n}\right\}$ is a sequence in X that converges to x. Prove that $\left\{f\left(x_{n}\right)\right\}$ converges to $f(x)$.

Let U be any neighborhood of $f(x)$. Then $f^{-1}(U)$ is a neighborhood of x, so there exists N such that if $n \geq N$ then $x_{n} \in f^{-1}(U)$. That is, if $n \geq N$, then $f\left(x_{n}\right) \in U$.
60. Let X be a Hausdorff space. Prove that limits in X are unique. That is, if $\left\{x_{n}\right\}$ is a sequence in X and $x_{n} \rightarrow x$ and $x_{n} \rightarrow y$, then $x=y$.

Suppose for contradiction that $x_{n} \rightarrow x$ and $x_{n} \rightarrow y$, but $x \neq y$. Choose disjoint neighborhoods U of x and V of y. There exist N_{1} and N_{2} such that if $n \geq N_{1}$ then $x_{n} \in U$, and if $n \geq N_{2}$ then $x_{n} \in V$. So if $n \geq \max \left\{N_{1}, N_{2}\right\}, x_{n} \in U \cap V$, contradicting the fact that U and V are disjoint.

