
Math 4853 homework

51. Let X be a set with the cofinite topology. Prove that every subspace of X has the
cofinite topology (i. e. the subspace topology on each subset A equals the cofinite
topology on A). Notice that this says that every subset of X is compact. So not every
compact subset of X is closed (unless X is finite, in which case X and all of its subsets
are finite sets with the discrete topology).

Let U be a nonempty open subset of A for the subspace topology. Then U = V ∩ A
for some open subset V of X. Now V = X − F for some finite subset F . So V ∩ A =
(X − F ) ∩ A = (A ∩ X) − (A ∩ F ) = A − (A ∩ F ). Since A ∩ F is finite, this is open in
the cofinite topology on A. Conversely, suppose that U is an open subset for the cofinite
topology of A. Then U = A − F1 for some finite subset F1 of A. Then, X − F1 is open in
X, and (X − F1) ∩ A = A− F1, so A− F1 is open in the subspace topology.

52. Let X be a Hausdorff space. Prove that every compact subset A of X is closed.
Hint: Let x /∈ A. For each a ∈ A, choose disjoint open subsets Ua and Va of X such
that x ∈ Ua and a ∈ Va. The collection {Va ∩ A} is an open cover of A, so has a
finite subcover {Vai

∩ A}ni=1. Now, let U = ∩n
i=1Uai

, a neighborhood of x. Prove that
U ⊂ X − A (draw a picture!), which proves that X − A is open.

To show that X−A is open, it suffices to prove that for each x /∈ A, there exists an open
set U of X with x ∈ U ⊆ X −A. Fix some x ∈ X −A. For each a ∈ A, choose disjoint open
subsets Ua and Va of X such that x ∈ Ua and a ∈ Va. The collection {Va ∩ A} is an open
cover of A, so has a finite subcover {Vai

∩A}ni=1. Now, let U = ∩n
i=1Uai

, a neighborhood of x.
We claim that U ⊆ X −A. Suppose for contradiction that y ∈ U ∩A. Since y ∈ A, y ∈ Vaj

for some j. Also, y ∈ U = ∩n
i=1Uai

⊆ Uaj
. This is impossible since Uaj

and Vaj
are disjoint.

53. Prove that the only connected nonempty subsets of Q are its one-point subsets.

We will prove that if S is a nonempty connected subset of Q, then S contains only one
point, by arguing the contrapositive.

Suppose that S is a subset of Q that contains more than one point, say a, b ∈ S with a < b.
Choose an irrational number s with a < s < b. Let U = (−∞, s) ∩ S and V = (s,∞) ∩ S.
These are disjoint, open in S, nomempty (since a ∈ U and b ∈ V ), and their union is S
(since ((−∞, s) ∩ S) ∪ ((s,∞) ∩ S) = ((−∞, s) ∪ (s,∞)) ∩ S = (R− {s}) ∩ S = S), so S is
not connected.

[One may one to point out that a one-point subset is connected— this is immediate since
a one-point set cannot admit a surjective function to {1, 2}.]

54. Let X be a topological space and let S ⊆ X. Prove that if S is connected, then S is
connected.



Let f : S → {1, 2} be a continuous function. Then f |S is continuous. Since S is connected,
f |S is constant, say f(S) = 1. Since f is continuous, f(S) ⊆ f(S) = {1} = {1}, so f is also
constant.

Alternatively, suppose for contradiction that S = U ∪V with U and V disjoint nonempty
open subsets. Since S is connected, either U ∩S or V ∩S must be empty, say V ∩S is empty.
Then S ⊂ U . Now U is closed in S, since its complement V is open, so S ⊂ U . But then,
V is empty, a contradiction.

55. Let X be an infinite set with the cofinite topology. Prove that X is connected.

Suppose that U and V were disjoint nonempty sets in X whose union is X. Now U =
X − FU and V − X − FV for some finite subsets FU and FV . Since U and V are disjoint,
V ⊂ FU and U ⊂ FV . But then, X = U ∪ V ⊆ FV ∪ FU would be finite, a contradiction.

56. Suppose A and B are connected subsets of a space X. Prove that if A∩B is nonempty,
then A ∪B is connected.

Suppose that f : A ∪ B → {1, 2} is continuous. Since A is connected, f |A is constant,
say f(A) ⊆ {1}. Similarly, f |B is constant, so f(A) ⊆ {1} or f(B) ⊆ {2}. The latter is
impossible, since there is a point x0 ∈ A ∩ B with f(x0) = 1, so f(B) ⊆ {1} and therefore
f(A ∪B) ⊆ {1}. Since every function from A ∪B to {1, 2} is constant, A ∪B is connected.

Alternatively, suppose that A ∪ B = U ∪ V with U and V disjoint open sets. Since A
is connected, A ⊆ U or A ⊆ V , say A ⊆ U . Similarly, B ⊆ U or B ⊆ V . The latter is
impossible, since there is a point x0 ∈ A∩B with x0 ∈ U , so A∪B ⊆ U . Therefore V must
be empty.

57. Let X = C([0, 1]), the set of continuous functions from [0, 1] to R. Define ρ(f, g) =
maxx∈[0,1]{(1 − x2)|f(x) − g(x)|}. Verify the triangle inequality. Hint: If F (x) ≤
G(x) for all x ∈ [0, 1], then F (x) ≤ maxx∈[0,1]{G(x)} for all x ∈ [0, 1], and therefore
maxx∈[0,1]{F (x)} ≤ maxx∈[0,1]{G(x)}.

let f, g, h ∈ X. For all x ∈ [0, 1], we have

(1− x2)|f(x)− g(x)| ≤ (1− x2)(|f(x)− h(x)||h(x)− g(x)|)
= (1− x2)|f(x)− h(x)|+ (1− x2)|h(x)− g(x)| ≤ ρ(f, h) + ρ(h, f)

and therefore ρ(f, g) ≤ ρ(f, h) + ρ(h, f).

58. Let (X, d) be a metric space and let A be a subset of X.

(a) Use continuity of d to prove that if A is compact, then A is closed. Hint: If A is
not closed, there is a limit point z of A that is not contained in A. Consider the
function f : A→ R defined by f(x) = 1/d(x, z).



(b) Prove that X is Hausdorff, and apply Problem 52 to prove if A is compact, then
A is closed.

For (a), suppose that A is not closed. Then there exists a limit point z of A that is not
contained on A. Since d is continuous and d(x, z) > 0 for all x ∈ A, the function f : A→ R
defined by f(x) = 1/d(x, z) is continuous. To show that A is not compact, it suffices to show
that f is unbounded. Let M ∈ R be any positive number. Since z is a limit point of A, there
exists a point x ∈ A ∩B(z, 1/M). Since d(x, z) < 1/M , f(x) = 1/d(x, z) > M . Therefore f
is unbounded.

For (b), let x, y ∈ X. We will show that B(x, d(x, y)/2) and B(y, d(x, y)/2) are disjoint
neighborhoods of x and y. If not, then there exists z ∈ B(x, d(x, y)/2) ∩ B(y, d(x, y)/2).
But then, d(x, y) ≤ d(x, z) + d(z, y) ≤ d(x, y)/2 + d(x, y)/2 = d(x, y), a contradiction. We
conclude that X is Hausdorff. By Problem 52, compact subsets of X are closed.

59. Let f : X → Y be continuous. Suppose {xn } is a sequence in X that converges to x.
Prove that { f(xn) } converges to f(x).

Let U be any neighborhood of f(x). Then f−1(U) is a neighborhood of x, so there exists
N such that if n ≥ N then xn ∈ f−1(U). That is, if n ≥ N , then f(xn) ∈ U .

60. Let X be a Hausdorff space. Prove that limits in X are unique. That is, if {xn } is a
sequence in X and xn → x and xn → y, then x = y.

Suppose for contradiction that xn → x and xn → y, but x 6= y. Choose disjoint neigh-
borhoods U of x and V of y. There exist N1 and N2 such that if n ≥ N1 then xn ∈ U , and
if n ≥ N2 then xn ∈ V . So if n ≥ max{N1, N2}, xn ∈ U ∩ V , contradicting the fact that U
and V are disjoint.


