
Math 4853 homework

61. Let { zn = (xn, yn) } be a sequence in X × Y . Prove that {zn} → (x, y) if and only
if {xn} → x and {yn} → y. Hint: For one direction, you can use an earlier problem
applied to the projection functions.

Suppose first that {zn} → (x, y). By problem 59, {πX(zn)} → πX((x, y)), that is,
{xn} → x, and similarly {yn} → y. Conversely, assume that {xn} → x and {yn} → y. Let W
be a neighborhood of (x, y), and choose a basic open set U×V such that (x, y) ∈ U×V ⊂ W .
Since x ∈ U and y ∈ V , there exist N1 and N2 such that if n ≥ N1 then xn ∈ U , and if
n ≥ N2 then yn ∈ V . So if n ≥ max{N1, N2}, (xn, yn) ∈ U × V ⊂ W .

62. Prove that every uncountable subset of R has a limit point in R. (Let A be an un-
countable subset of R, and for n ∈ Z put An = A ∩ [n, n+ 1].)

Suppose that A is an uncountable subset of R. For n ∈ Z put An = A ∩ [n, n + 1], so
that A = ∪n∈ZAn. If every An were finite, then A would be a countable union of finite sets,
so would be countable. So some An, say AN , is infinite. Since AN ⊆ [N,N + 1], which is
compact, AN has a limit point x0 in [N,N + 1]. It is also a limit point of A in R, since if U
is any neighborhood of x0 in R, then U ∩ [N,N + 1] is a neighborhood of x0 in [N,N + 1],
so contains a point of AN other than x0.

63. Let {xn} be a sequence in a metric space X. Prove that if xn → x, then {xn} is
Cauchy.

Given ε > 0, choose N so that if n > N , then d(xn, x) < ε/2. If m,n > N , then
d(xm, xn) ≤ d(xm, x) + d(x, xn) < ε/2 + ε/2 = ε.

64. Give Rk the metric d(x, y) = ‖x− y ‖. Let {zn} be a sequence of points in Rk, written
in coordinates as zn = (z1
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65. Let {fn} be a sequence of functions in C([0, 1],Rk) (the set of continuous functions
from [0, 1] to Rk. Prove that if {fn} → f uniformly, then {fn} → f pointwise.

Fix x0 ∈ [0, 1], and let ε > 0. Since {fn} → f uniformly, there exists N so that if
n ≥ N , then for every x ∈ [0, 1], ‖ fn(x) − f(x) ‖ < ε. In particular, if n ≥ N , then
‖ fn(x0)− f(x0) ‖ < ε. Therefore {f(x0)} → f(x0).

66. Let fn : [0, 1]→ R be fn(x) = xn, and let f : [0, 1]→ R be defined by f(x) = 0 if x < 1
and f(1) = 1. Using the definitions, prove that fn → f pointwise but not uniformly.

For pointwise convergence, suppose first that 0 ≤ x0 < 1. Then by calculus, {xn
0} → 0 =

f(x0). For x0 = 1, {xn
0} = {1} → 1 = f(x0).

Suppose for contradiction that {xn} → f uniformly. Then there exists N so that if
n ≥ N , then for all x ∈ [0, 1], |xn − f(x)| < 1/2. Fix n0 > N , and put zn = 1− 1/n. Then
{zn} → 1. Since the function xn0 is continuous, {zn0
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