Math 4853 homework

61. Let $\left\{z_{n}=\left(x_{n}, y_{n}\right)\right\}$ be a sequence in $X \times Y$. Prove that $\left\{z_{n}\right\} \rightarrow(x, y)$ if and only if $\left\{x_{n}\right\} \rightarrow x$ and $\left\{y_{n}\right\} \rightarrow y$. Hint: For one direction, you can use an earlier problem applied to the projection functions.

Suppose first that $\left\{z_{n}\right\} \rightarrow(x, y)$. By problem 59, $\left\{\pi_{X}\left(z_{n}\right)\right\} \rightarrow \pi_{X}((x, y))$, that is, $\left\{x_{n}\right\} \rightarrow x$, and similarly $\left\{y_{n}\right\} \rightarrow y$. Conversely, assume that $\left\{x_{n}\right\} \rightarrow x$ and $\left\{y_{n}\right\} \rightarrow y$. Let W be a neighborhood of (x, y), and choose a basic open set $U \times V$ such that $(x, y) \in U \times V \subset W$. Since $x \in U$ and $y \in V$, there exist N_{1} and N_{2} such that if $n \geq N_{1}$ then $x_{n} \in U$, and if $n \geq N_{2}$ then $y_{n} \in V$. So if $n \geq \max \left\{N_{1}, N_{2}\right\},\left(x_{n}, y_{n}\right) \in U \times V \subset W$.
62. Prove that every uncountable subset of \mathbb{R} has a limit point in \mathbb{R}. (Let A be an uncountable subset of \mathbb{R}, and for $n \in \mathbb{Z}$ put $A_{n}=A \cap[n, n+1]$.)

Suppose that A is an uncountable subset of \mathbb{R}. For $n \in \mathbb{Z}$ put $A_{n}=A \cap[n, n+1]$, so that $A=\cup_{n \in \mathbb{Z}} A_{n}$. If every A_{n} were finite, then A would be a countable union of finite sets, so would be countable. So some A_{n}, say A_{N}, is infinite. Since $A_{N} \subseteq[N, N+1]$, which is compact, A_{N} has a limit point x_{0} in $[N, N+1]$. It is also a limit point of A in \mathbb{R}, since if U is any neighborhood of x_{0} in \mathbb{R}, then $U \cap[N, N+1]$ is a neighborhood of x_{0} in $[N, N+1]$, so contains a point of A_{N} other than x_{0}.
63. Let $\left\{x_{n}\right\}$ be a sequence in a metric space X. Prove that if $x_{n} \rightarrow x$, then $\left\{x_{n}\right\}$ is Cauchy.

Given $\epsilon>0$, choose N so that if $n>N$, then $d\left(x_{n}, x\right)<\epsilon / 2$. If $m, n>N$, then $d\left(x_{m}, x_{n}\right) \leq d\left(x_{m}, x\right)+d\left(x, x_{n}\right)<\epsilon / 2+\epsilon / 2=\epsilon$.
64. Give \mathbb{R}^{k} the metric $d(x, y)=\|x-y\|$. Let $\left\{z_{n}\right\}$ be a sequence of points in \mathbb{R}^{k}, written in coordinates as $z_{n}=\left(z_{n}^{1}, z_{n}^{2}, \ldots, z_{n}^{k}\right)$. Prove that $\left\{z_{n}\right\}$ is Cauchy if and only if each $\left\{z_{n}^{i}\right\}$ is a Cauchy sequence in $(\mathbb{R},|x-y|)$.

Assume that $\left\{z_{n}\right\}$ is Cauchy. Given $\epsilon>0$, choose N so that if $m, n>N$, then $\| z_{m}-$ $z_{n} \|<\epsilon$. For this N and for each $1 \leq i \leq n$, we have $\left|z_{m}^{i}-z_{n}^{i}\right|=\sqrt{\left(z_{m}^{i}-z_{n}^{i}\right)^{2}} \leq$ $\sqrt{\sum_{j=1}^{n}\left(z_{m}^{j}-z_{n}^{j}\right)^{2}}=\left\|z_{m}-z_{n}\right\|<\epsilon$.

Conversely, assume that each $\left\{z_{n}^{i}\right\}$ is Cauchy, and let $\epsilon>0$ be given. For each i, there exists N_{i} such that if $m, n>N_{i}$, then $\left|z_{m}^{i}-z_{n}^{i}\right|<\epsilon / \sqrt{n}$. Let $N=\max N_{i}$. For $m, n>N$, we have $\left\|z_{m}-z_{n}\right\|=\sqrt{\sum_{i=1}^{n}\left(z_{m}^{i}-z_{n}^{i}\right)^{2}}<\sqrt{\sum_{i=1}^{n}(\epsilon / \sqrt{n})^{2}}=\sqrt{\sum_{i=1}^{n} \epsilon^{2} / n}=\sqrt{\epsilon^{2}}=\epsilon$.
65. Let $\left\{f_{n}\right\}$ be a sequence of functions in $C\left([0,1], \mathbb{R}^{k}\right)$ (the set of continuous functions from $[0,1]$ to \mathbb{R}^{k}. Prove that if $\left\{f_{n}\right\} \rightarrow f$ uniformly, then $\left\{f_{n}\right\} \rightarrow f$ pointwise.

Fix $x_{0} \in[0,1]$, and let $\epsilon>0$. Since $\left\{f_{n}\right\} \rightarrow f$ uniformly, there exists N so that if $n \geq N$, then for every $x \in[0,1],\left\|f_{n}(x)-f(x)\right\|<\epsilon$. In particular, if $n \geq N$, then $\left\|f_{n}\left(x_{0}\right)-f\left(x_{0}\right)\right\|<\epsilon$. Therefore $\left\{f\left(x_{0}\right)\right\} \rightarrow f\left(x_{0}\right)$.
66. Let $f_{n}:[0,1] \rightarrow \mathbb{R}$ be $f_{n}(x)=x^{n}$, and let $f:[0,1] \rightarrow \mathbb{R}$ be defined by $f(x)=0$ if $x<1$ and $f(1)=1$. Using the definitions, prove that $f_{n} \rightarrow f$ pointwise but not uniformly.

For pointwise convergence, suppose first that $0 \leq x_{0}<1$. Then by calculus, $\left\{x_{0}^{n}\right\} \rightarrow 0=$ $f\left(x_{0}\right)$. For $x_{0}=1,\left\{x_{0}^{n}\right\}=\{1\} \rightarrow 1=f\left(x_{0}\right)$.

Suppose for contradiction that $\left\{x^{n}\right\} \rightarrow f$ uniformly. Then there exists N so that if $n \geq N$, then for all $x \in[0,1],\left|x^{n}-f(x)\right|<1 / 2$. Fix $n_{0}>N$, and put $z_{n}=1-1 / n$. Then $\left\{z_{n}\right\} \rightarrow 1$. Since the function $x^{n_{0}}$ is continuous, $\left\{z_{n}^{n_{0}}\right\} \rightarrow 1^{n_{0}}=1$. Therefore there exists n_{1} such that $z_{n_{1}}^{n_{0}}>1 / 2$, so $\left|z_{n_{1}}^{n_{0}}-f\left(z_{n_{1}}\right)\right|=\left|z_{n_{1}}^{n_{0}}\right|>1 / 2$, a contradiction.

