Math 4853 homework

- 23. (3/1) Let X be a set and let \mathcal{B} be a collection of subsets of X. Define $\mathcal{U} = \{U \subseteq X \mid \forall x \in U, \exists B \in \mathcal{B}, x \in B \subseteq U\}$. Prove that $U \in \mathcal{U}$ if and only if U is a union of elements of \mathcal{B} .
- 24. (3/1) Let X be a set and let \mathcal{B} be a collection of subsets of X. We say that \mathcal{B} is a *basis* if it satisfies:
 - B1. $X = \bigcup_{B \in \mathcal{B}} B$.
 - B2. $\forall B_1, B_2 \in \mathcal{B}, \forall x \in B_1 \cap B_2, \exists B \in \mathcal{B}, x \in B \subseteq B_1 \cap B_2.$

Define $\mathcal{U} = \{ U \subseteq X \mid \forall x \in U, \exists B \in \mathcal{B}, x \in B \subseteq U \}$. Prove that if \mathcal{B} is a basis, then \mathcal{U} is a topology on X.

- 25. (3/1) Let X be a topological space and let \mathcal{B} be a basis for the topology on X. Let $A \subset X$, and define $\mathcal{B}_A = \{B \cap A \mid B \in \mathcal{B}\}.$
 - a. Prove that \mathcal{B}_A is a basis.
 - b. Prove that \mathcal{B}_A generates the subspace topology on A. [Let \mathcal{U}_A be the topology generated by \mathcal{B}_A , and let \mathcal{U} be the subspace topology. Show that $U \in \mathcal{U}$ if and only if $U \in \mathcal{U}_A$. For the if direction, start with $U \in \mathcal{U}_A$, for each $a \in U$ choose B_a with $a \in B_a \in U$, so that $U = \bigcup_{a \in U} B_a$, write each $B_a = B'_a \cap A$ with $B'_a \in \mathcal{B}$, and consider $V = \bigcup_{a \in U} B'_a$.]
- 26. (3/12) Take as known the fact that a composition of bijections is a bijection (prove this if it is not already clear to you).
 (a) Show that if X and Y are countable sets, then there is a bijection from X to Y.
 (b) Let X be a countable set and suppose there is a bijection from Y to X. Show that Y is also countable.
- 27. (3/12) State a theorem that the following argument proves: For each $x \in X$, $\Phi^{-1}(\{x\})$ is a nonempty subset of \mathbb{N} , so has a minimal element; define $\phi(x)$ to be the minimal element of $\Phi^{-1}(\{x\})$. If $x_1 \neq x_2$, then $\Phi^{-1}(\{x_1\}) \cap \Phi^{-1}(\{x_2\})$ is empty, so $\phi(x_1) \neq \phi(x_2)$. So ϕ is a bijection from X to a subset A of \mathbb{N} . Since A must be countable, X is also countable.
- 28. (3/12) Prove that the product $P = \{0, 2\} \times \{0, 2\} \times \{0, 2\} \times \cdots = \{(a_1, a_2, a_3, \ldots) \mid a_i \in \{0, 2\}\}$ is uncountable. Prove that the subset $A \subset P$ defined by $A = \{(a_1, a_2, \ldots) \in P \mid \exists N, \forall n > N, a_n = 0\}$ is countable.