Math 4853 homework

36. (4/2) Prove that the continuous bijection $f:[0,2 \pi) \rightarrow S^{1}$ defined by $f(t)=(\cos (t), \sin (t))$ is not a homeomorphism.
37. (4/2) (a) Let \mathcal{C} be the cofinite topology on \mathbb{R}. Prove that if $f^{-1}(\{r\})$ finite for every $r \in \mathbb{R}$, then $f:(\mathbb{R}, \mathcal{C}) \rightarrow(\mathbb{R}, \mathcal{C})$ is continuous. [You will need to use the fact that if $g: X \rightarrow Y$ is a function and $S \subseteq Y$, then $g^{-1}(Y-S)=X-g^{-1}(S)$, which you should check if it is not clear to you.]
(b) Examine the converse of part (a).
38. (not to turn in) Work through the following step-by-step argument proving that the following are equivalent for a bijection $\phi: X \rightarrow Y$ between topological spaces:
(i) ϕ is a homeomorphism.
(ii) U is open in X if and only if $\phi(U)$ is open in Y.

First, we observe that if $\phi: X \rightarrow Y$ is a bijection, and $A \subseteq X$, then $\left(\phi^{-1}\right)^{-1}(A)=\phi(A)$. For we have $x \in\left(\phi^{-1}\right)^{-1}(U) \Leftrightarrow \phi^{-1}(x) \in U \Leftrightarrow x=\phi\left(\phi^{-1}(x)\right) \in \phi(U)$.

Assume (i). Suppose first that U is open in X. Then $\phi(U)=\left(\phi^{-1}\right)^{-1}(U)$ is open in Y, since ϕ^{-1} is continuous. Suppose now that $\phi(U)$ is open in Y. Then $U=\phi^{-1}(\phi(U))$ is open in X, since ϕ is continuous.

Now assume (ii). Let V be open in Y. Since $V=\phi\left(\phi^{-1}(V)\right)$, (ii) implies that $\phi^{-1}(V)$ is open in X, so ϕ is continuous. Let U be open in X. Then $\left(\phi^{-1}\right)^{-1}(U)=\phi(U)$, which is open by (ii). Therefore ϕ^{-1} is continuous.
39. (4/2) In \mathbb{R}, let $\mathcal{S}=\{(a, \infty) \mid a \in \mathbb{R}\} \cup\{(-\infty, b) \mid b \in \mathbb{R}\}$. Prove that \mathcal{S} is a subbasis that generates the standard topology. Find a similar sub-basis for the lower-limit topology.
40. (4/2) Let \mathcal{B}_{X} and \mathcal{B}_{Y} be bases for the topologies of two spaces X and Y. Prove that $\left\{B_{1} \times B_{2} \mid B_{1} \in \mathcal{B}_{X}, B_{2} \in \mathcal{B}_{Y}\right\}$ is a basis for the product topology on $X \times Y$.
41. (4/2) Let $f: X \rightarrow Y$ be a function. Recall that the graph of f is the subset $\Gamma_{f} \subset X \times Y$ defined by $\Gamma_{f}=\{(x, y) \mid f(x)=y\}$. Assume that X is a topological space and that Y is a Hausdorff topological space, which means that if y_{1} and y_{2} are any two points of Y, then there are disjoint open sets V_{1} and V_{2} in Y with $y_{1} \in V_{1}$ and $y_{2} \in V_{2}$. Prove that if f is continuous, then the complement $X \times Y-\Gamma_{f}$ of Γ_{f} is an open subset of $X \times Y$. Hint: Write $W=X \times Y-\Gamma_{f}$. It suffices to show that if $\left(x_{0}, y_{0}\right) \in W$, then there is a basic open set W^{\prime} with $\left(x_{0}, y_{0}\right) \in W^{\prime} \subseteq W$. Since $\left(x_{0}, y_{0}\right) \in W, f\left(x_{0}\right) \neq y_{0}$ and therefore there are disjoint open sets V_{1} and V_{2} in Y with $f\left(x_{0}\right) \in V_{1}$ and $y_{0} \in V_{2}$. Now examine $W^{\prime}=f^{-1}\left(V_{1}\right) \times V_{2}$ (draw a picture!).

