Math 4853 homework

51. (not to turn in) Let X be a set with the cofinite topology. Prove that every subspace of X has the cofinite topology (i. e. the subspace topology on each subset A equals the cofinite topology on A). Notice that this says that every subset is compact. So not every compact subset of X is closed (unless X is finite, in which case X and all of its subsets are finite sets with the discrete topology).
52. (4/28) Let X be a Hausdorff space. Prove that every compact subset A of X is closed. Hint: Let $x \notin A$. For each $a \in A$, choose disjoint open subsets U_{a} and V_{a} of X such that $x \in U_{a}$ and $a \in V_{a}$. The collection $\left\{V_{a} \cap A\right\}$ is an open cover of A, so has a finite subcover $\left\{V_{a_{i}} \cap A\right\}_{i=1}^{n}$. Now, let $U=\cap_{i=1}^{n} U_{a_{i}}$, a neighborhood of x. Prove that $U \subset X-A$ (draw a picture!), which proves that $X-A$ is open.
53. $(4 / 28)$ Prove that the only connected nonempty subsets of \mathbb{Q} are its one-point subsets.
54. (4/28) Let X be a topological space and let $S \subseteq X$. Prove that if S is connected, then \bar{S} is connected.
55. (4/28) Let X be an infinite set with the cofinite topology. Prove that X is connected.
56. (4/28) Suppose A and B are connected subsets of a space X. Prove that if $A \cap B$ is nonempty, then $A \cup B$ is connected.
57. (4/28) Let $X=C([0,1])$, the set of continuous functions from $[0,1]$ to \mathbb{R}. Define $\rho(f, g)=\max _{x \in[0,1]}\left\{\left(1-x^{2}\right)|f(x)-g(x)|\right\}$. Verify the triangle inequality. Hint: If $F(x) \leq G(x)$ for all $x \in[0,1]$, then $F(x) \leq \max _{x \in[0,1]}\{G(x)\}$ for all $x \in[0,1]$, and therefore $\max _{x \in[0,1]}\{F(x)\} \leq \max _{x \in[0,1]}\{G(x)\}$.
58. (4/28) Let (X, d) be a metric space and let A be a subset of X.
(a) Use continuity of d to prove that if A is compact, then A is closed. Hint: If A is not closed, there is a limit point z of A that is not contained in A. Consider the function $f: A \rightarrow \mathbb{R}$ defined by $f(x)=1 / d(x, z)$.
(b) Prove that X is Hausdorff, and apply Problem 52 to prove if A is compact, then A is closed.
59. (4/28) Let $f: X \rightarrow Y$ be continuous. Suppose $\left\{x_{n}\right\}$ is a sequence in X that converges to x. Prove that $\left\{f\left(x_{n}\right)\right\}$ converges to $f(x)$.
60. (4/28) Let X be a Hausdorff space. Prove that limits in X are unique. That is, if $\left\{x_{n}\right\}$ is a sequence in X and $x_{n} \rightarrow x$ and $x_{n} \rightarrow y$, then $x=y$.
61. Let $\left\{z_{n}=\left(x_{n}, y_{n}\right)\right\}$ be a sequence in $X \times Y$. Prove that $\left\{z_{n}\right\} \rightarrow(x, y)$ if and only if $\left\{x_{n}\right\} \rightarrow x$ and $\left\{y_{n}\right\} \rightarrow y$. Hint: For one direction, you can use an earlier problem applied to the projection functions.
