Math 4853 homework

- 51. (not to turn in) Let X be a set with the cofinite topology. Prove that every subspace of X has the cofinite topology (i. e. the subspace topology on each subset A equals the cofinite topology on A). Notice that this says that every subset is compact. So not every compact subset of X is closed (unless X is finite, in which case X and all of its subsets are finite sets with the discrete topology).
- 52. (4/28) Let X be a Hausdorff space. Prove that every compact subset A of X is closed. Hint: Let $x \notin A$. For each $a \in A$, choose disjoint open subsets U_a and V_a of X such that $x \in U_a$ and $a \in V_a$. The collection $\{V_a \cap A\}$ is an open cover of A, so has a finite subcover $\{V_{a_i} \cap A\}_{i=1}^n$. Now, let $U = \bigcap_{i=1}^n U_{a_i}$, a neighborhood of x. Prove that $U \subset X - A$ (draw a picture!), which proves that X - A is open.
- 53. (4/28) Prove that the only connected nonempty subsets of \mathbb{Q} are its one-point subsets.
- 54. (4/28) Let X be a topological space and let $S \subseteq X$. Prove that if S is connected, then \overline{S} is connected.
- 55. (4/28) Let X be an infinite set with the cofinite topology. Prove that X is connected.
- 56. (4/28) Suppose A and B are connected subsets of a space X. Prove that if $A \cap B$ is nonempty, then $A \cup B$ is connected.
- 57. (4/28) Let X = C([0,1]), the set of continuous functions from [0,1] to \mathbb{R} . Define $\rho(f,g) = \max_{x \in [0,1]} \{(1-x^2) | f(x) g(x)| \}$. Verify the triangle inequality. Hint: If $F(x) \leq G(x)$ for all $x \in [0,1]$, then $F(x) \leq \max_{x \in [0,1]} \{G(x)\}$ for all $x \in [0,1]$, and therefore $\max_{x \in [0,1]} \{F(x)\} \leq \max_{x \in [0,1]} \{G(x)\}$.
- 58. (4/28) Let (X, d) be a metric space and let A be a subset of X.
 - (a) Use continuity of d to prove that if A is compact, then A is closed. Hint: If A is not closed, there is a limit point z of A that is not contained in A. Consider the function $f: A \to \mathbb{R}$ defined by f(x) = 1/d(x, z).
 - (b) Prove that X is Hausdorff, and apply Problem 52 to prove if A is compact, then A is closed.
- 59. (4/28) Let $f: X \to Y$ be continuous. Suppose $\{x_n\}$ is a sequence in X that converges to x. Prove that $\{f(x_n)\}$ converges to f(x).
- 60. (4/28) Let X be a Hausdorff space. Prove that limits in X are unique. That is, if $\{x_n\}$ is a sequence in X and $x_n \to x$ and $x_n \to y$, then x = y.
- 61. Let $\{z_n = (x_n, y_n)\}$ be a sequence in $X \times Y$. Prove that $\{z_n\} \to (x, y)$ if and only if $\{x_n\} \to x$ and $\{y_n\} \to y$. Hint: For one direction, you can use an earlier problem applied to the projection functions.