February 19, 2010

Instructions: Give concise answers, but clearly indicate your reasoning.

- **I**. Use the ϵ - δ definition to prove that the function $f: \mathbb{R} \to \mathbb{R}$ defined by f(x) = 3x is continuous.
- (6)
- **II**. Use the ϵ - δ definition to prove that if the function $f : \mathbb{R} \to \mathbb{R}$ is continuous, then so is 3f.
- (6)
- **III.** Give an example of a function $f : \mathbb{R} \to \mathbb{R}$ that is continuous at every irrational number and is discontinuous
- (5) at every rational number. You do *not* need to verify that it has this property, just tell how f is defined.

 ${\bf IV}.$ \quad Take as known the facts that

- (6)
 - (i) The function $F \colon \mathbb{R}^2 \to \mathbb{R}$ defined by F((x,y)) = xy is continuous.
- (ii) A function from \mathbb{R}^m to \mathbb{R}^n is continuous if and only if its coordinate functions are continuous.
- (iii) A composition of continuous functions is continuous.

Use (i), (ii), and (iii) to give a quick proof that if f and g are continuous functions from \mathbb{R} to \mathbb{R} , then so is their product $f \cdot g$ (defined by $(f \cdot g)(x) = f(x) g(x)$).

- **V**. (a) Let $x \in \mathbb{R}^n$ and $\epsilon > 0$. Prove that if $z \in B(x, \epsilon)$, then $B(z, \epsilon ||z x||) \subseteq B(x, \epsilon)$.
- (10)
- (b) Recall that our official definition of open sets in \mathbb{R}^n was that a set U is open if and only if $\forall x \in U, \exists \epsilon > 0, B(x, \epsilon) \subseteq U$. Using this definition and part (a), prove that if U is a union of open balls in \mathbb{R}^n , then U is open.
- **VI**. Let $f: \mathbb{R}^m \to \mathbb{R}^n$ be a function satisfying the ϵ - δ definition of continuity. Using the definition of open sets
- (8) in \mathbb{R}^n , and so on, prove that if U is an open subset of \mathbb{R}^n , then the inverse image $f^{-1}(U)$ is open in \mathbb{R}^m .
- **VII.** Let X be a set. Give a full, precise definition of a *topology on* X.
- (8)
- **VIII**. Recall that if \mathbb{R} has the cofinite topology, then a subset U of \mathbb{R} is open if and only if $\mathbb{R} U$ is finite (or U
- (6) is empty). Use DeMorgan's Law $\cup (X S_{\alpha}) = X (\cap S_{\alpha})$ to show that if U and V are any two nonempty open sets in \mathbb{R} with the cofinite topology, then $U \cap V$ is not empty.