February 19, 2010

Instructions: Give concise answers, but clearly indicate your reasoning.
I. Use the $\epsilon-\delta$ definition to prove that the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=3 x$ is continuous.
(6)

Fix $x_{0} \in \mathbb{R}$ and let $\epsilon>0$. Put $\delta=\epsilon / 3$. If $\left|x-x_{0}\right|<\delta$, then $\left|3 x-3 x_{0}\right|=3\left|x-x_{0}\right|<3 \delta=3 \epsilon / 3=\epsilon$.
II. Use the $\epsilon-\delta$ definition to prove that if the function $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous, then so is $3 f$.
(6)

Fix $x_{0} \in \mathbb{R}$ and let $\epsilon>0$. Since f is continuous, there exists $\delta>0$ such that if $\left|x-x_{0}\right|<\delta$, then $\left|f(x)-f\left(x_{0}\right)\right|<\epsilon / 3$. If $\left|x-x_{0}\right|<\delta$, then $\left|3 f(x)-3 f\left(x_{0}\right)\right|=3\left|f(x)-f\left(x_{0}\right)\right|<3 \epsilon / 3=\epsilon$.
III. Give an example of a function $f: \mathbb{R} \rightarrow \mathbb{R}$ that is continuous at every irrational number and is discontinuous (5) at every rational number. You do not need to verify that it has this property, just tell how f is defined.

Define $f: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
f(x)= \begin{cases}1 / q & \text { if } x \text { is rational and } x= \pm \frac{p}{q} \text { in lowest terms with } p \geq 0 \text { and } q>0 \\ 0 & \text { if } x \text { is irrational }\end{cases}
$$

IV. Take as known the facts that
(i) The function $F: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by $F((x, y))=x y$ is continuous.
(ii) A function from \mathbb{R}^{m} to \mathbb{R}^{n} is continuous if and only if its coordinate functions are continuous.
(iii) A composition of continuous functions is continuous.

Use (i), (ii), and (iii) to give a quick proof that if f and g are continuous functions from \mathbb{R} to \mathbb{R}, then so is their product $f \cdot g$ (defined by $(f \cdot g)(x)=f(x) g(x))$.

Define $G: \mathbb{R} \rightarrow \mathbb{R}^{2}$ by $G(x)=(f(x), g(x))$. Since the coordinate functions f and g of G are continuous, so is G. Therefore the composition $F \circ G: \mathbb{R} \rightarrow \mathbb{R}$ is continuous. But $(F \circ G)(x)=F(G(x))=F((f(x), g(x)))=$ $f(x) g(x)$, that is, $F \circ G=f \cdot g$.
V. (a) Let $x \in \mathbb{R}^{n}$ and $\epsilon>0$. Prove that if $z \in B(x, \epsilon)$, then $B(z, \epsilon-\|z-x\|) \subseteq B(x, \epsilon)$.
(b) Recall that our official definition of open sets in \mathbb{R}^{n} was that a set U is open if and only if $\forall x \in U, \exists \epsilon>$ $0, B(x, \epsilon) \subseteq U$. Using this definition and part (a), prove that if U is a union of open balls in \mathbb{R}^{n}, then U is open.

For (a), assume that $z \in B(x, \epsilon)$. Suppose $y \in B(z, \epsilon-\|z-x\|)$. Then $\|y-x\|=\|y-z+z-x\| \leq$ $\|y-z\|+\|z-x\|<\epsilon-\|z-x\|+\|z-x\|=\epsilon$, so $y \in B(x, \epsilon)$.

For (b), suppose $U=\cup_{\alpha \in \mathcal{A}} B\left(x_{\alpha}, \epsilon_{\alpha}\right)$. Let $x \in U$. Then $x \in B\left(x_{\beta}, \epsilon_{\beta}\right)$ for some $\beta \in \mathcal{A}$. By part (a), $B\left(x, \epsilon_{\beta}-\left\|x-x_{\beta}\right\|\right) \subseteq B\left(x_{\beta}, \epsilon_{\beta}\right) \subseteq U$. Therefore U is open.
VI. Let $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ be a function satisfying the $\epsilon-\delta$ definition of continuity. Using the definition of open sets (8) in \mathbb{R}^{n}, and so on, prove that if U is an open subset of \mathbb{R}^{n}, then the inverse image $f^{-1}(U)$ is open in \mathbb{R}^{m}.

Assume that U is open in \mathbb{R}^{n}. Let $x \in f^{-1}(U)$. Then $f(x) \in U$. Since U is open, there exists $\epsilon>0$ such that $B(f(x), \epsilon) \subseteq U$. Since f is continuous in the $\epsilon-\delta$ definition, there exists $\delta>0$ such that if $\|z-x\|<\delta$, then $\|f(z)-f(x)\|<\epsilon$. This says that if $z \in B(x, \delta), f(z) \in B(f(x), \epsilon) \subset U$, and consequently $z \in f^{-1}(U)$. That is, $B(x, \delta) \in f^{-1}(U)$.
VII. Let X be a set. Give a full, precise definition of a topology on X.
(8)

A topology on X is a collection \mathcal{U} of subsets of X such that

1. $X \in \mathcal{U}$ and the empty subset $\emptyset \in \mathcal{U}$.
2. If $\left\{U_{\alpha}\right\}_{\alpha \in \mathcal{A}} \subseteq \mathcal{U}$, then the union $\cup_{\alpha \in \mathcal{A}} U_{\alpha} \in \mathcal{U}$.
3. If $\left\{U_{i}\right\}_{1 \leq i \leq n} \subseteq \mathcal{U}$, then the intersection $\cap_{1 \leq i \leq n} U_{i} \in \mathcal{U}$.
VIII. Recall that if \mathbb{R} has the cofinite topology, then a subset U of \mathbb{R} is open if and only if $\mathbb{R}-U$ is finite (or U is empty). Use DeMorgan's Law $\cup\left(X-S_{\alpha}\right)=X-\left(\cap S_{\alpha}\right)$ to show that if U and V are any two nonempty open sets in \mathbb{R} with the cofinite topology, then $U \cap V$ is not empty.

Suppose you have two nonempty open sets U and V. Then, $\mathbb{R}-(U \cap V)=(\mathbb{R}-U) \cup(\mathbb{R}-V)$. Since $\mathbb{R}-U$ and $\mathbb{R}-V$ are finite, so is $(\mathbb{R}-U) \cup(\mathbb{R}-V)$. Therefore $\mathbb{R}-(U \cap V)=(\mathbb{R}-U) \cup(\mathbb{R}-V)$ is not \mathbb{R}, so $U \cap V$ is not empty.

