February 19, 2010

Instructions: Give concise answers, but clearly indicate your reasoning.

I. Use the ϵ - δ definition to prove that the function $f \colon \mathbb{R} \to \mathbb{R}$ defined by f(x) = 3x is continuous. (6)

Fix $x_0 \in \mathbb{R}$ and let $\epsilon > 0$. Put $\delta = \epsilon/3$. If $|x - x_0| < \delta$, then $|3x - 3x_0| = 3|x - x_0| < 3\delta = 3\epsilon/3 = \epsilon$.

II. Use the ϵ - δ definition to prove that if the function $f : \mathbb{R} \to \mathbb{R}$ is continuous, then so is 3f.

(6)

Fix $x_0 \in \mathbb{R}$ and let $\epsilon > 0$. Since f is continuous, there exists $\delta > 0$ such that if $|x - x_0| < \delta$, then $|f(x) - f(x_0)| < \epsilon/3$. If $|x - x_0| < \delta$, then $|3f(x) - 3f(x_0)| = 3|f(x) - f(x_0)| < 3\epsilon/3 = \epsilon$.

III. Give an example of a function $f : \mathbb{R} \to \mathbb{R}$ that is continuous at every irrational number and is discontinuous (5) at every rational number. You do *not* need to verify that it has this property, just tell how f is defined.

Define $f \colon \mathbb{R} \to \mathbb{R}$ by

$$f(x) = \begin{cases} 1/q & \text{if } x \text{ is rational and } x = \pm \frac{p}{q} \text{ in lowest terms with } p \ge 0 \text{ and } q > 0 \\ 0 & \text{if } x \text{ is irrational} \end{cases}$$

 ${\bf IV}.$ \qquad Take as known the facts that

(6)

- (i) The function $F \colon \mathbb{R}^2 \to \mathbb{R}$ defined by F((x, y)) = xy is continuous.
- (ii) A function from \mathbb{R}^m to \mathbb{R}^n is continuous if and only if its coordinate functions are continuous.
- (iii) A composition of continuous functions is continuous.

Use (i), (ii), and (iii) to give a quick proof that if f and g are continuous functions from \mathbb{R} to \mathbb{R} , then so is their product $f \cdot g$ (defined by $(f \cdot g)(x) = f(x) g(x)$).

Define $G: \mathbb{R} \to \mathbb{R}^2$ by G(x) = (f(x), g(x)). Since the coordinate functions f and g of G are continuous, so is G. Therefore the composition $F \circ G: \mathbb{R} \to \mathbb{R}$ is continuous. But $(F \circ G)(x) = F(G(x)) = F((f(x), g(x))) = f(x) g(x)$, that is, $F \circ G = f \cdot g$.

V. (a) Let $x \in \mathbb{R}^n$ and $\epsilon > 0$. Prove that if $z \in B(x, \epsilon)$, then $B(z, \epsilon - ||z - x||) \subseteq B(x, \epsilon)$. (10)

(b) Recall that our official definition of open sets in \mathbb{R}^n was that a set U is open if and only if $\forall x \in U, \exists \epsilon > 0, B(x, \epsilon) \subseteq U$. Using this definition and part (a), prove that if U is a union of open balls in \mathbb{R}^n , then U is open.

For (a), assume that $z \in B(x, \epsilon)$. Suppose $y \in B(z, \epsilon - ||z - x||)$. Then $||y - x|| = ||y - z + z - x|| \le ||y - z|| + ||z - x|| < \epsilon - ||z - x|| + ||z - x|| = \epsilon$, so $y \in B(x, \epsilon)$.

For (b), suppose $U = \bigcup_{\alpha \in \mathcal{A}} B(x_{\alpha}, \epsilon_{\alpha})$. Let $x \in U$. Then $x \in B(x_{\beta}, \epsilon_{\beta})$ for some $\beta \in \mathcal{A}$. By part (a), $B(x, \epsilon_{\beta} - ||x - x_{\beta}||) \subseteq B(x_{\beta}, \epsilon_{\beta}) \subseteq U$. Therefore U is open.

VI. Let $f: \mathbb{R}^m \to \mathbb{R}^n$ be a function satisfying the ϵ - δ definition of continuity. Using the definition of open sets (8) in \mathbb{R}^n , and so on, prove that if U is an open subset of \mathbb{R}^n , then the inverse image $f^{-1}(U)$ is open in \mathbb{R}^m .

Assume that U is open in \mathbb{R}^n . Let $x \in f^{-1}(U)$. Then $f(x) \in U$. Since U is open, there exists $\epsilon > 0$ such that $B(f(x), \epsilon) \subseteq U$. Since f is continuous in the ϵ - δ definition, there exists $\delta > 0$ such that if $||z - x|| < \delta$, then $||f(z) - f(x)|| < \epsilon$. This says that if $z \in B(x, \delta)$, $f(z) \in B(f(x), \epsilon) \subset U$, and consequently $z \in f^{-1}(U)$. That is, $B(x, \delta) \in f^{-1}(U)$.

VII. Let X be a set. Give a full, precise definition of a *topology on* X. (8)

A topology on X is a collection \mathcal{U} of subsets of X such that

- 1. $X \in \mathcal{U}$ and the empty subset $\emptyset \in \mathcal{U}$.
- 2. If $\{U_{\alpha}\}_{\alpha \in \mathcal{A}} \subseteq \mathcal{U}$, then the union $\bigcup_{\alpha \in \mathcal{A}} U_{\alpha} \in \mathcal{U}$.
- 3. If $\{U_i\}_{1 \leq i \leq n} \subseteq \mathcal{U}$, then the intersection $\cap_{1 \leq i \leq n} U_i \in \mathcal{U}$.
- **VIII**. Recall that if \mathbb{R} has the cofinite topology, then a subset U of \mathbb{R} is open if and only if $\mathbb{R} U$ is finite (or U
- (6) is empty). Use DeMorgan's Law $\cup (X S_{\alpha}) = X (\cap S_{\alpha})$ to show that if U and V are any two nonempty open sets in \mathbb{R} with the cofinite topology, then $U \cap V$ is not empty.

Suppose you have two nonempty open sets U and V. Then, $\mathbb{R} - (U \cap V) = (\mathbb{R} - U) \cup (\mathbb{R} - V)$. Since $\mathbb{R} - U$ and $\mathbb{R} - V$ are finite, so is $(\mathbb{R} - U) \cup (\mathbb{R} - V)$. Therefore $\mathbb{R} - (U \cap V) = (\mathbb{R} - U) \cup (\mathbb{R} - V)$ is not \mathbb{R} , so $U \cap V$ is not empty.