demonstrating that you have the ability to verify a fact is the point of the problem).
I. Using a Cantor-style argument, prove that the product

$$
\begin{equation*}
P=\{0,1,2\} \times\{0,1,2\} \times\{0,1,2\} \times \cdots=\left\{\left(a_{1}, a_{2}, a_{3}, \ldots\right) \mid a_{i} \in\{0,1,2\}\right\} \tag{7}
\end{equation*}
$$

of countably many copies of the set $\{0,1,2\}$ is uncountable.
II. Let $P=\{0,1,2\} \times\{0,1,2\} \times\{0,1,2\} \times \cdots=\left\{\left(a_{1}, a_{2}, a_{3}, \ldots\right) \mid a_{i} \in\{0,1,2\}\right\}$, and let $A \subset P$ be defined (7) by $A=\left\{\left(a_{1}, a_{2}, \ldots\right) \in P \mid \exists N, \forall n>N, a_{n}=0\right\}$. Using the facts that products of finitely many countable sets are countable and unions of countably many countable sets are countable [where in this context, "countable" means "finite or countably infinite"], prove that A is countable.
III. Let X be a set and let \mathcal{A} be a collection of subsets of X.
(10)
(a) Define what it means to say that \mathcal{A} is a basis.
(b) If \mathcal{A} is a basis, define the topology generated by \mathcal{A}.
(c) Define what it means to say that \mathcal{A} is a sub-basis.
(d) If \mathcal{A} is a sub-basis, define the topology generated by \mathcal{A}.
IV. (a) State the Basis Recognition Theorem.
(10)
(b) Use the Basis Recognition Theorem to prove that if \mathcal{B} is a basis for a topology on X, and $A \subseteq X$, then $\{B \cap A \mid B \in \mathcal{B}\}$ is a basis for the subspace topology on A.
V. Let X be the set of real numbers. There is a topology on X defined by $\mathcal{U}=\{\emptyset, X\} \cup\{(a, \infty) \mid a \in X\}$,
(8) that is, a nonempty set is open if and only if it is empty, is X, or is an open ray to ∞ (you do not need to check that \mathcal{U} is a topology).
(a) Prove that if $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous (where as usual, \mathbb{R} means the real numbers with the standard topology), then f is also continuous when its codomain is given the topology \mathcal{U}.
(b) Give a counterexample to the converse of (a).
VI. Let X and Y be topological spaces.
(10)
(a) Define what it means to say that $h: X \rightarrow Y$ is a homeomorphism.
(b) Verify that if X is homeomorphic to Y and Y is homeomorphic to Z, then X is homeomorphic to Z. You may assume the known fact that for bijections, $(g \circ f)^{-1}=f^{-1} \circ g^{-1}$ [proof: $(g \circ f)^{-1}(z)=x \Leftrightarrow(g \circ f)(x)=$ $\left.z \Leftrightarrow g(f(x))=z \Leftrightarrow g^{-1}(z)=f(x) \Leftrightarrow f^{-1}\left(g^{-1}(z)\right)=x \Leftrightarrow\left(f^{-1} \circ g^{-1}\right)(z)=x\right]$.
(c) Let \mathcal{L} be the lower-limit topology on \mathbb{R}. Show that the identity function from $(\mathbb{R}, \mathcal{L})$ to \mathbb{R} is not a homeomorphism.

