I. Using a Cantor-style argument, prove that the product

$$
\begin{equation*}
P=\{0,1,2\} \times\{0,1,2\} \times\{0,1,2\} \times \cdots=\left\{\left(a_{1}, a_{2}, a_{3}, \ldots\right) \mid a_{i} \in\{0,1,2\}\right\} \tag{7}
\end{equation*}
$$

of countably many copies of the set $\{0,1,2\}$ is uncountable.
Let $\phi: \mathbb{N} \rightarrow P$ be any function. For each n, write $\phi(n)=\left(a_{n, 1}, a_{n, 2}, a_{n, 3}, \ldots\right)$ and [one possible choice is to] put $b_{n}=0$ if $a_{n, n}=1$ or $a_{n, n}=2$, and put $b_{n}=2$ if $a_{n, n}=0$. Then $b=\left(b_{1}, b_{2}, b_{3}, \ldots\right) \in P$ and b differs from $\phi(n)$ in the $n^{\text {th }}$ coordinate, so $b \neq \phi(n)$ for any n. Therefore ϕ is not surjective. Since there is no surjective function from \mathbb{N} to P, there cannot be any bijection between them, so P is not countable.
[Remark: one can deduce this result immediately from the fact that P contains the subset $\prod_{i=1}^{\infty}\{0,2\}$. Since every subset of a countable set is countable, and we proved in homework that the latter set is uncountable, P cannot be countable.]
II. Let $P=\{0,1,2\} \times\{0,1,2\} \times\{0,1,2\} \times \cdots=\left\{\left(a_{1}, a_{2}, a_{3}, \ldots\right) \mid a_{i} \in\{0,1,2\}\right\}$, and let $A \subset P$ be defined
(7) by $A=\left\{\left(a_{1}, a_{2}, \ldots\right) \in P \mid \exists N, \forall n>N, a_{n}=0\right\}$. Using the facts that products of finitely many countable sets are countable and unions of countably many countable sets are countable [where in this context, "countable" means "finite or countably infinite"], prove that A is countable.

For each N, put $A_{N}=\left\{\left(a_{1}, a_{2}, \ldots\right) \in P \mid \forall n>N, a_{n}=0\right\}$. For each N, there is a bijection ϕ_{N} from A_{N} to the finite set $\prod_{i=1}^{N}\{0,1,2\}$ given by $\phi_{N}\left(\left(a_{1}, a_{2}, \ldots, a_{N}, 0,0,0, \ldots\right)\right)=\left(a_{1}, a_{2}, \ldots, a_{N}\right)$. Therefore each A_{N} is finite. Since $A=\cup_{N \in \mathbb{N}} A_{N}, A$ is a union of countably many countable sets, so A is countable.
III. Let X be a set and let \mathcal{A} be a collection of subsets of X.
(10)
(a) Define what it means to say that \mathcal{A} is a basis.

It means that $\cup_{B \in \mathcal{A}} B=X$ and for all $B_{1}, B_{2} \in \mathcal{A}$ and for all $x \in B_{1} \cap B_{2}$, there exists $B \in \mathcal{A}$ such that $x \in B \subseteq B_{1} \cap B_{2}$.
(b) If \mathcal{A} is a basis, define the topology generated by \mathcal{A}.
$\{U \subseteq X \mid \forall x \in U, \exists B \in \mathcal{A}, x \in B \subseteq U\}$.
(c) Define what it means to say that \mathcal{A} is a sub-basis.

It means that $\cup_{S \in \mathcal{A}} S=X$.
(d) If \mathcal{A} is a sub-basis, define the topology generated by \mathcal{A}.

Let $\mathcal{B}=\left\{S_{1} \cap S_{2} \cap \cdots \cap S_{n} \mid S_{i} \in \mathcal{A}\right\}$. It is a basis. The topology generated by \mathcal{A} is defined to be the topology generated by \mathcal{B}.
IV. (a) State the Basis Recognition Theorem.

Let X be a topological space and let \mathcal{B} be a collection of subsets of X. Suppose that (i) the elements of \mathcal{B} are open in X, and (ii) for every open set U in X and every $x \in U$, there exists $B \in \mathcal{B}$ such that $x \in B \subseteq U$. Then \mathcal{B} is a basis that generates the topology on X.
(b) Use the Basis Recognition Theorem to prove that if \mathcal{B} is a basis for a topology on X, and $A \subseteq X$, then $\{B \cap A \mid B \in \mathcal{B}\}$ is a basis for the subspace topology on A.

We need only verify the hypotheses of the Basis Recognition Theorem.
(i) Since \mathcal{B} is a basis for the topology on X, each element B of \mathcal{B} is open in X and hence each $B \cap A$ is open in (the subspace topology of) A.
(ii) Let U be open in A, and let $a \in U$. There exists V open in X such that $U=V \cap A$. Since $a \in V$, there exists $B \in \mathcal{B}$ such that $a \in B \subseteq V$. Intersecting with A, we have $a \in B \cap A \subseteq V \cap A=U$.
V. Let X be the set of real numbers. There is a topology on X defined by $\mathcal{U}=\{\emptyset, X\} \cup\{(a, \infty) \mid a \in X\}$,
(8) that is, a nonempty set is open if and only if it is empty, is X, or is an open ray to ∞ (you do not need to check that \mathcal{U} is a topology).
(a) Prove that if $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous (where as usual, \mathbb{R} means the real numbers with the standard topology), then f is also continuous when its codomain is given the topology \mathcal{U}.

Let U be open in X. Then U is either empty, X, or of the form (a, ∞), and in any case U is also open in the standard topology. Since $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous, $f^{-1}(U)$ is open in \mathbb{R}.
(b) Give a counterexample to the converse of (a).

Define $f: \mathbb{R} \rightarrow X$ by $f(x)=1$ if $x>0$ and $f(x)=0$ if $x \leq 0$. Then $f^{-1}((a, \infty))$ is equal to \emptyset if $1 \leq a$, to $(0, \infty)$ if $0 \leq a<1$, and to \mathbb{R} if $a<0$, so in any case $f^{-1}((a, \infty))$ is open in \mathbb{R}. But f is not continuous as a function from \mathbb{R} to \mathbb{R} (for example, $f^{-1}((-1,1 / 2))=(-\infty, 0]$ is not open).
VI. Let X and Y be topological spaces.
(10)
(a) Define what it means to say that $h: X \rightarrow Y$ is a homeomorphism.

It means that h is a continuous bijection whose inverse function $h^{-1}: Y \rightarrow X$ is also continuous. [Or one can say it means h is a bijection and U is open in X if and only if $h(U)$ is open in Y.]
(b) Verify that if X is homeomorphic to Y and Y is homeomorphic to Z, then X is homeomorphic to Z. You may assume the known fact that for bijections, $(g \circ f)^{-1}=f^{-1} \circ g^{-1}$ [proof: $(g \circ f)^{-1}(z)=x \Leftrightarrow(g \circ f)(x)=$ $\left.z \Leftrightarrow g(f(x))=z \Leftrightarrow g^{-1}(z)=f(x) \Leftrightarrow f^{-1}\left(g^{-1}(z)\right)=x \Leftrightarrow\left(f^{-1} \circ g^{-1}\right)(z)=x\right]$.

Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be homeomorphisms. They are bijections, so their composition $g \circ f: X \rightarrow$ Z is a bijection. Since f and g are continuous, so is their composition $g \circ f$. Each of f^{-1} and g^{-1} is continuous, and $(g \circ f)^{-1}=f^{-1} \circ g^{-1}$, so $(g \circ f)^{-1}$ is a composition of continuous functions and therefore is continuous.
(c) Let \mathcal{L} be the lower-limit topology on \mathbb{R}. Show that the identity function from $(\mathbb{R}, \mathcal{L})$ to \mathbb{R} is not a homeomorphism.

Let $I:(\mathbb{R}, \mathcal{L}) \rightarrow \mathbb{R}$ be the identity map. The set $[0,1)$ is open in $(\mathbb{R}, \mathcal{L})$, but $\left(I^{-1}\right)^{-1}([0,1))=[0,1)$ is not open in \mathbb{R}. Therefore I^{-1} is not continuous.

