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Name (please print)

Instructions: Give concise answers, but clearly indicate your reasoning in any arguments that you give. You do
not need to verify commonly used facts, unless demonstrating that you have the ability to verify a fact is the point
of the problem.

I.
(12)

Let X be R with the lower limit topology.

(a) Prove that X is not connected.

Let U = (−∞, 1/2) and V = [1/2,∞). These are disjoint, open in X, nonempty, and their union is X,
so X is not connected.

(b) Prove that in X, the sequence {1/n} converges to 0.

Let U be any neighborhood of 0. Then U contains some interval [0, ε). If n > 1/ε, then 1/n ∈ [0, ε) ⊆ U .

(c) Prove that in X, the sequence {1− 1/n} does not converge to 1.

The neighborhood [1, 2) contains none of the points 1− 1/n, so the sequence does not converge to 1.

II.
(6)

Let {Cα}α∈A be a collection of closed subsets of a topological space X.

(a) Using the definition of closed set, prove that their intersection ∩α∈ACα is closed.

Each X − Cα is open, so X − ∩α∈ACα = ∪α∈A(X − Cα) is open. Therefore ∩α∈A is closed.

(b) Give an example for which the union ∪α∈ACα is not closed.

Let Cn = [1/(n+ 1), 1/n] for n ∈ N. These are closed in R. But ∪∞n=1Cn = (0, 1], which is not a closed
subset of R.

III.
(6)

Take as known the fact that x ∈ A if and only if every neighborhood of x contains a point of A. Prove
that if f : X → Y is continuous and S ⊆ X, then f(S) ⊆ f(S).

Let y ∈ f(S), say y = f(x) with x ∈ S. Let U be any neighborhood of y. Then f−1(U) is open and
contains x. Since x ∈ S, f−1(U) contains a point s of S. So f(s) ∈ U . Therefore every neighborhood
of y contains a point of f(S), so y ∈ f(S).

A different and nice approach that some people used: Since f(S) is closed and f is continuous,
f−1(f(S)) is closed. Since S ⊆ f−1(f(S)), S ⊆ f−1(f(S)). Therefore f(S) ⊆ f(S).

IV.
(6)

Let X be compact, and let f : X → R be continuous. Use the definition of compactness to prove that f is
bounded.

Since X = f−1(R) = f−1(∪n∈N(−n, n)) = ∪n∈Nf
−1((−n, n)), so the collection {f−1((−n, n))}n∈N

is an open cover of X. Let {f−1((−n1, n1)), . . . , f−1((−nk, nk))} be a finite subcover, so X =
∪ki=1f

−1((−ni, ni)). That is, f(X) ⊆ ∪ki=1(−ni, ni) = (−N,N) where N = maxki=1{ni}. This says
that f is bounded.
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V.
(6)

Prove that if X and Y are Hausdorff spaces, then X × Y is Hausdorff. (Hint: if (x, y) 6= (x′, y′), then at
least one of x 6= x′ or y 6= y′ is true. So either x and x′ have disjoint neighborhoods in X, or y and y′ have
disjoint neighborhoods in Y .)

Since (x, y) 6= (x′, y′), either x and x′ have disjoint neighborhoods in X, or y and y′ have disjoint
neighborhoods in Y . We may assume that x and x′ have disjoint neighborhoods U and V , the other
case being similar. We then have (x, y) ∈ π−1

X (U) and (x′, y) ∈ π−1
X (V ), which are open since πX is

continuous, and are disjoint since U and V are disjoint.

VI.
(6)

Let {1, 2, 3} have the discrete topology. Suppose that X is a space and there exists a continuous surjection
from X to {1, 2, 3}. Prove that X is not connected.

One proof: Let f : X → {1, 2, 3} be a continuous surjection. Put U = f−1({1}) and V = f−1({2, 3}).
These are 1) open, since f is continuous, 2) disjoint, since {1} and {2, 3} are disjoint, 3) nonempty,
since f is surjective, and their union is X. So X is not connected.

A nicer proof: Let f : X → {1, 2, 3} be a continuous surjection. Define g : {1, 2, 3} → {1, 2} by
g(1) = 1, g(2) = 2, and g(3) = 2. Then g is a continous surjection, so the composition g◦f : X → {1, 2}
is a continuous surjection. Therefore X is not connected.

VII.
(6)

Let f : X1 → X2 and g : Y1 → Y2 be continuous maps. Define F : X1 × Y1 → X2 × Y2 by F ((x, y)) =
(f(x), g(y)). Prove that F is continuous.

πX2 ◦ F : X1 × Y1 → X2 sends (x, y) to f(x), so it equals f ◦ πX1 . Similarly, πY2 ◦ F : X1 × Y1 → Y2

equals g ◦ πY1 . Since these are continuous, the Mapping Into Products Theorem shows that F is
continuous.

or: Let U×V be a basic open set in X2×Y2. Then F−1(U×V ) = f−1(U)×g−1(V ), since (f(x), g(y))
is in U × V exactly when f(x) is in U and g(x) is in V . Since f and g are continuous, f−1(U) and
g−1(V ) are open, so F−1(U × V ) is open.

VIII.
(6)

Let (X, d) be a metric space, and let x ∈ X. Suppose that the sequence {xn}∞n=1 has the property that for
every n, xn ∈ B(x, 1/n). Prove that {xn} → x.

Let U be a neighborhood of x. Then there exists ε > 0 such that Bd(x, ε) ⊆ U . For all n > 1/ε,
d(x, xn) < 1/n < ε, so xn ∈ Bd(x, ε) ⊆ U .


