Math 3113 homework

38. (assigned 4/11) $5.2 \# 2,3,4$ (do not do the part of the problem that asks you to use a computer system or graphing calculator, just use the eigenvalue method to find the general solution).
39. (assigned 4/13) 5.2 \# 8, 9 (again, do not do the part of the problem that asks you to use a computer system or graphing calculator, just use the eigenvalue method to find the general solution).
40. (assigned 4/18) Study the solutions to Quiz 7 that are now posted. 7.1 \# 1 (use integration by parts to calculate $\int_{0}^{b} e^{-s t} t d t$), 3,7 (notice that for this function, $\int_{0}^{b} e^{-s t} f(t) d t=$ $\int_{0}^{1} e^{-s t} d t$ whenever $b \geq 1$. In taking the limit as $b \rightarrow \infty$, you can assume that $b \geq 1$ since only large values of b affect the limit.) Try to do $7.1 \# 13$ using the transforms in Fig. 7.1.2 (and linearity). On Wednesday we'll do a number of examples illustrating how to do 7.1 \# 11-22.
41. (assigned 4/20) 7.1 \# 11-19 (for \# 17, 18, use a trig identity), 7.1 \# 23-32 (all can be done using the formulas, no need for the partial fractions method yet)
42. (assigned 4/22) No new problems, just make sure you are fully caught up on 7.1, and understand the formula $\mathcal{L}\left(f^{\prime}(t)\right)=s \mathcal{L}(f(t))-f(0)$.
43. (assigned 4/25) $7.2 \# 1,4,8$ (all can be done using method $2-$ plugging in specific values of s to find the coefficients, rather than setting up linear equations to solve for them). Do others if you need more practice.
44. (assigned 4/27) $7.2 \# 10$ (when solving for the coefficients in the partial fractions, you can only determine three of the four unknown coefficients by substituting values of the variable s. But for the fourth one, you only need to compute the coefficient of s^{3} and observe that it must be 0 , then you can find the fourth coefficient since you have already found the other three), $7.2 \# 11,7.3 \# 32$.
45. (assigned 5/2) 7.2 as many as needed of \# 17-24, including at least \# 17, 18, 20 (easier if you write the fraction as a sum of a fraction with numerator $2 s$ and one with numerator 1), 21 (use the formula twice).
46. (assigned 5/4) 7.3 \# 1-10, 18. Some of problems \# 11-22 and 27-28 would be good practice for the final exam.
47. (assigned 5/4) $7.4 \# 15,17,22$ (remember that $\left.\ln (a)-\ln (b)=\ln \left(\frac{a}{b}\right)\right)$
