Instructions: Give concise answers, but clearly indicate your reasoning.
I. For the first-order linear homogeneous $\mathrm{DE} y^{\prime}+P(x) y=0$, verify that if y_{1} and y_{2} are solutions, then so is (3) $A y_{1}+B y_{2}$ for any constants A and B.
II. Check whether the initial value problem $\frac{d y}{d x}=y^{2 / 3}, y(2)=0$ satisfies the hypotheses of the Existence and (3) Uniqueness Theorem. What does the theorem tell you about the solutions of this IVP?
III. For the linear $\mathrm{DE} x y^{\prime}=2 y+x^{3} \cos (x)$, find an integrating factor, then carry out the recipe to find the (5) general solution. (Hint: If you find yourself needing integration by parts, you have made a computational error along the way. Don't burn time on the calculation until you have the correct integrating factor and have done the algebra correctly.)
IV. Rewrite the $\mathrm{DE}(x+2 y) y^{\prime}=y$ as a homogeneous DE, and carry out the substitution $v=\frac{y}{x}$ to transform
(4) the equation into a DE of the form $v^{\prime}=F(v, x)$. Simplify and tell what method you would use to solve this DE , but do not carry out the method or proceed beyond this point.

