February 25, 2011

Instructions: Give concise answers, but clearly indicate your reasoning.
I. Two linearly independent solutions of the DE $y^{\prime \prime}+3 y^{\prime}+2 y=0$ are e^{-x} and $e^{-2 x}$ (do not check these).
(a) Write a general solution of $y^{\prime \prime}+3 y^{\prime}+2 y=0$.

$$
y=A e^{-x}+B e^{-2 x}
$$

(b) Find the solution that satisfies $y(1)=1, y^{\prime}(1)=0$.

$$
\begin{aligned}
& y^{\prime}=-A e^{-x}-2 B e^{-2 x} . \text { We want } \\
& \qquad \begin{array}{c}
1=y(1)=A e^{-1}+B e^{-2} \\
0=y^{\prime}(1)=-A e^{-1}-2 B e^{-2}
\end{array}
\end{aligned}
$$

Adding the two equations gives $1=-B e^{-2}$, so $B=-e^{2}$, and from the first equation $1=A e^{-1}-e^{2} e^{-2}=$ $A / e-1$, so $A=2 e$. The desired solution is $2 e e^{-x}-e^{2} e^{-2 x}=2 e^{1-x}-e^{2-2 x}$.
II. This problem concerns the DE $y^{\prime \prime}+y-x=0$. The function $\sin (x)+x$ is a solution, but $2(\sin (x)+x)$ is (2) not. Why does this not violate the Principle of Superposition?

The DE is not homogeneous (put into the standard form, it becomes $y^{\prime \prime}+y=x$).
III. This problem concerns the DE $y^{\prime \prime}-2 y^{\prime}+2=2 x$.
(a) Write the associated homogeneous equation of $y^{\prime \prime}-2 y^{\prime}+2=2 x$.

$$
y^{\prime \prime}-2 y^{\prime}=0
$$

(b) A solution of $y^{\prime \prime}-2 y^{\prime}+2=2 x$ is $x+1$ (do not check this). Given that $e^{x} \cos (x)$ and $e^{x} \sin (x)$ are linearly independent solutions of the associated homogeneous equation, write a general solution of $y^{\prime \prime}-2 y^{\prime}+2=2 x$.

$$
A e^{x} \cos (x)+B e^{x} \sin (x)+x+1
$$

IV. For the DE $4 y^{\prime \prime}+4 y^{\prime}+y=0$, the characteristic equation is $4 r^{2}+4 r+1=(2 r+1)^{2}$. Since it has repeated (4) roots $-1 / 2$ and $-1 / 2$, two solutions of the DE are $e^{-x / 2}$ and $x e^{-x / 2}$ (do not check that they are solutions). Compute the Wronskian of $e^{-x / 2}$ and $x e^{-x / 2}$.

$$
\begin{aligned}
& \left(e^{-x / 2}\right)^{\prime}=-e^{-x / 2} / 2 \text { and }\left(x e^{-x / 2}\right)^{\prime}=e^{-x / 2}-x e^{-x / 2} / 2, \text { so } \\
& W\left(e^{-x / 2}, x e^{-x / 2}\right)=\operatorname{det}\left(\begin{array}{cc}
e^{-x / 2} & x e^{-x / 2} \\
-e^{-x / 2} / 2 & e^{-x / 2}-x e^{-x / 2} / 2
\end{array}\right)=e^{-x}-x e^{-x} / 2-\left(-x e^{-x} / 2\right)=e^{-x}
\end{aligned}
$$

