Mathema	tice	311	3_	005
маниеша	LUICS	011	.o-	บบอ

Quiz 3 Form B

February 25, 2011

Name (please print)

Instructions: Give concise answers, but clearly indicate your reasoning.

- I. Two linearly independent solutions of the DE y'' 3y' + 2y = 0 are e^x and e^{2x} (do not check these).
- (6)
 - (a) Write a general solution of y'' 3y' + 2y = 0.
 - (b) Find the solution that satisfies y(1) = 1, y'(1) = 0.
- II. This problem concerns the DE y'' + 2y' + 2 = -2x.
- (3)
 - (a) Write the associated homogeneous equation of y'' + 2y' + 2 = -2x.
 - (b) A solution of y'' + 2y' + 2 = -2x is 1 x (do not check this). Given that $e^{-x} \cos(x)$ and $e^{-x} \sin(x)$ are linearly independent solutions of the associated homogeneous equation, write a general solution of y'' + 2y' + 2 = -2x.
- III. For the DE 9y'' + 9y' + y = 0, the characteristic equation is $9r^2 + 9r + 1 = (3r + 1)^2$. Since it has repeated
- (4) roots -1/3 and -1/3, two solutions of the DE are $e^{-x/3}$ and $xe^{-x/3}$ (do not check that they are solutions). Compute the Wronskian of $e^{-x/3}$ and $xe^{-x/3}$.
- IV. This problem concerns the DE y'' + y + x = 0. The function $\sin(x) x$ is a solution, but $2(\sin(x) x)$ is
- (2) not. Why does this not violate the Principle of Superposition?