Instructions: Give concise answers, but clearly indicate your reasoning.
I. Two linearly independent solutions of the DE $y^{\prime \prime}-3 y^{\prime}+2 y=0$ are e^{x} and $e^{2 x}$ (do not check these).
(a) Write a general solution of $y^{\prime \prime}-3 y^{\prime}+2 y=0$.
(b) Find the solution that satisfies $y(1)=1, y^{\prime}(1)=0$.
II. This problem concerns the DE $y^{\prime \prime}+2 y^{\prime}+2=-2 x$.
(a) Write the associated homogeneous equation of $y^{\prime \prime}+2 y^{\prime}+2=-2 x$.
(b) A solution of $y^{\prime \prime}+2 y^{\prime}+2=-2 x$ is $1-x$ (do not check this). Given that $e^{-x} \cos (x)$ and $e^{-x} \sin (x)$ are linearly independent solutions of the associated homogeneous equation, write a general solution of $y^{\prime \prime}+2 y^{\prime}+2=-2 x$.
III. For the $\operatorname{DE} 9 y^{\prime \prime}+9 y^{\prime}+y=0$, the characteristic equation is $9 r^{2}+9 r+1=(3 r+1)^{2}$. Since it has repeated (4) roots $-1 / 3$ and $-1 / 3$, two solutions of the DE are $e^{-x / 3}$ and $x e^{-x / 3}$ (do not check that they are solutions). Compute the Wronskian of $e^{-x / 3}$ and $x e^{-x / 3}$.
IV. This problem concerns the DE $y^{\prime \prime}+y+x=0$. The function $\sin (x)-x$ is a solution, but $2(\sin (x)-x)$ is (2) not. Why does this not violate the Principle of Superposition?

