February 25, 2011

Instructions: Give concise answers, but clearly indicate your reasoning.
I. Two linearly independent solutions of the DE $y^{\prime \prime}-3 y^{\prime}+2 y=0$ are e^{x} and $e^{2 x}$ (do not check these). (6)
(a) Write a general solution of $y^{\prime \prime}-3 y^{\prime}+2 y=0$.

$$
y=A e^{x}+B e^{2 x}
$$

(b) Find the solution that satisfies $y(1)=1, y^{\prime}(1)=0$.

$$
\begin{aligned}
& y^{\prime}=A e^{x}+2 B e^{2 x} . \text { We want } \\
& \qquad \begin{aligned}
1=y(1) & =A e+B e^{2} \\
0=y^{\prime}(1) & =A e+2 B e^{2}
\end{aligned}
\end{aligned}
$$

Subtracting the two equations gives $1=-B e^{2}$, so $B=-e^{-2}$. From the first equation $1=A e-e^{-2} e^{2}$, so $A=2 / e$. The desired solution is $2 e^{x} / e-e^{-2} e^{2 x}=2 e^{x-1}-e^{2 x-2}$.
II. This problem concerns the DE $y^{\prime \prime}+2 y^{\prime}+2=-2 x$.
(a) Write the associated homogeneous equation of $y^{\prime \prime}+2 y^{\prime}+2=-2 x$.

$$
y^{\prime \prime}+2 y^{\prime}=0
$$

(b) A solution of $y^{\prime \prime}+2 y^{\prime}+2=-2 x$ is $1-x$ (do not check this). Given that $e^{-x} \cos (x)$ and $e^{-x} \sin (x)$ are linearly independent solutions of the associated homogeneous equation, write a general solution of $y^{\prime \prime}+2 y^{\prime}+2=-2 x$.

$$
A e^{-x} \cos (x)+B e^{-x} \sin (x)+1-x
$$

III. For the $\mathrm{DE} 9 y^{\prime \prime}+9 y^{\prime}+y=0$, the characteristic equation is $9 r^{2}+9 r+1=(3 r+1)^{2}$. Since it has repeated
(4) roots $-1 / 3$ and $-1 / 3$, two solutions of the DE are $e^{-x / 3}$ and $x e^{-x / 3}$ (do not check that they are solutions). Compute the Wronskian of $e^{-x / 3}$ and $x e^{-x / 3}$.

$$
\begin{aligned}
& \left(e^{-x / 3}\right)^{\prime}=-e^{-x / 3} / 3 \text { and }\left(x e^{-x / 3}\right)^{\prime}=e^{-x / 3}-x e^{-x / 3} / 3, \text { so } \\
& W\left(e^{-x / 3}, x e^{-x / 3}\right)=\operatorname{det}\left(\begin{array}{cc}
e^{-x / 3} & x e^{-x / 3} \\
-e^{-x / 3} / 3 & e^{-x / 3}-x e^{-x / 3} / 3
\end{array}\right)=e^{-2 x / 3}-x e^{-2 x / 3} / 3-\left(-x e^{-2 x / 3} / 3\right)=e^{-2 x / 3}
\end{aligned}
$$

IV. This problem concerns the DE $y^{\prime \prime}+y+x=0$. The function $\sin (x)-x$ is a solution, but $2(\sin (x)-x)$ is
(2) not. Why does this not violate the Principle of Superposition?

The DE is not homogeneous (put into the standard form, it becomes $y^{\prime \prime}+y=-x$).

