March 4, 2011
Instructions: Give concise answers, but clearly indicate your reasoning.
I. Given that

$$
\begin{equation*}
\lambda^{6}+14 \lambda^{5}+83 \lambda^{4}+268 \lambda^{3}+499 \lambda^{2}+510 \lambda+225=(\lambda+3)^{2}\left(\lambda^{2}+4 \lambda+5\right)^{2} \tag{4}
\end{equation*}
$$

write a general solution of the DE

$$
y^{(6)}+14 y^{(5)}+83 y^{(4)}+268 y^{(3)}+499 y^{\prime \prime}+510 y^{\prime}+225 y=0
$$

The roots of the characteristic polynomial are $-3,-3,-2 \pm i$, and $-2 \pm i$. The first two give the solutions $e^{-3 x}$ and $x e^{-3 x}$, and the second two pairs give the solutions $e^{-2 x} \cos (x), e^{-2 x} \sin (x)$, $x e^{-2 x} \cos (x)$, and $x e^{-2 x} \sin (x)$. These six solutions are linearly independent, so a general solution is

$$
c_{1} e^{-3 x}+c_{2} x e^{-3 x}+c_{3} e^{-2 x} \cos (x)+c_{4} e^{-2 x} \sin (x)+c_{5} x e^{-2 x} \cos (x)+c_{6} x e^{-2 x} \sin (x) .
$$

II. The function $\cos (x)$ satisfies the $\mathrm{DE} y^{\prime \prime}+y^{\prime}+y=-\sin (x)$. Find a general solution.

The associated homogeneous DE is $y^{\prime \prime}+y^{\prime}+y=0$. Its characteristic polynomial is $\lambda^{2}+\lambda+1$, which has roots $-1 / 2 \pm(\sqrt{3} / 2) i$. Therefore a general solution of the associated homogeneous DE is

$$
c_{1} e^{-x / 2} \cos (\sqrt{3} x / 2)+c_{2} e^{-x / 2} \sin (\sqrt{3} x / 2)
$$

and a general solution of the original nonhomogeneous DE is

$$
c_{1} e^{-x / 2} \cos (\sqrt{3} x / 2)+c_{2} e^{-x / 2} \sin (\sqrt{3} x / 2)+\cos (x)
$$

III. Show that the set of functions $\left\{1,2 \sin ^{2}(x), \cos ^{2}(x)\right\}$ is linearly dependent.

Since $\sin ^{2}(x)+\cos ^{2}(x)=1$, we have $(1 / 2) \cdot 2 \sin ^{2}(x)+1 \cdot \cos ^{2}(x)+(-1) \cdot 1=0$. Since there is a nonzero linear combination of these functions that equals the zero function, the set is linearly dependent.
IV. Define what it means to say that a collection of functions $\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$ is linearly independent.

It means that $c_{1} y_{1}+c_{2} y_{2}+\cdots+c_{n} y_{n}=0$ for constants c_{i} only when all the c_{i} are 0 .

