March 11, 2011

Instructions: Give concise answers, but clearly indicate your reasoning.
I. \quad Suppose that the function $-8 \cos (x)-3 \sin (x)$ is rewritten in phase-angle form $C \cos (\omega t-\alpha)$ (do not try to
(3) carry this out, just suppose that someone did). Give the phase angle α as an expression that involves a value of the inverse tangent function (that is, as an expression containing a number of the form tan ${ }^{-1}$ (something), not a decimal number. You do not need to evaluate it on a calculator.)
II. Write trial solutions for using the method of undetermined coefficients to find a particular solution of (7) the following DE's, but do not carry out the calculations or proceed further with obtaining a particular solution.
(a) $y^{\prime \prime}+4 y=e^{2 x}$
(b) $y^{\prime \prime}-4 y=e^{2 x}$
(c) $y^{(4)}+6 y^{\prime \prime}+9 y=\cos (3 x)$
III. A certain mass-spring system is modeled by the second-order equation $x^{\prime \prime}+c x^{\prime}+12 x=0$, where c is the
(2) damping constant. Find the value of c that gives critical damping (that is, the value of c for which the system neither overdamped nor underdamped).
IV. Define what it means to say that a collection of functions $\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$ is linearly independent.

