Quiz 5 Form A

March 11, 2011

Instructions: Give concise answers, but clearly indicate your reasoning.

- I. Suppose that the function $-8\cos(x) 3\sin(x)$ is rewritten in phase-angle form $C\cos(\omega t \alpha)$ (do not try to
- (3) carry this out, just suppose that someone did). Give the phase angle α as an expression that involves a value of the inverse tangent function (that is, as an expression containing a number of the form \tan^{-1} (something), not a decimal number. You do not need to evaluate it on a calculator.)

We have (A, B) = (-8, -3), which lies in the third quadrant. Since the angle $\tan^{-1}(B/A) = \tan^{-1}(3/8)$ lies in the first quadrant, α is $\pi + \tan^{-1}(3/8)$.

- II. Write trial solutions for using the method of undetermined coefficients to find a particular solution of
 (7) the following DE's, but *do not* carry out the calculations or proceed further with obtaining a particular solution.
 - (a) $y'' + 4y = e^{2x}$

The associated homogeneous DE y'' + 4y = 0 has characteristic polynomial $\lambda^2 + 4$ with roots $\lambda = \pm 2i$, so the complementary functions are $y_c = c_1 \cos(2x) + c_2 \sin(2x)$. The trial solution is $x^s(Ae^{2x})$, and s = 0 is sufficient to ensure that no term is a complementary function. So a trial solution is $y_p = Ae^{2x}$.

(b) $y'' - 4y = e^{2x}$

(3)

The associated homogeneous DE y'' - 4y = 0 has characteristic polynomial $\lambda^2 - 4$ with roots $\lambda = \pm 2$, so the complementary functions are $y_c = c_1 e^{2x} + c_2 e^{-2x}$. The trial solution is $x^s(Ae^{2x})$, and s = 1 is sufficient to ensure that no term is a complementary function. So a trial solution is $y_p = Axe^{2x}$.

(c) $y^{(4)} + 6y'' + 9y = \cos(3x)$

The associated homogeneous DE $y^{(4)} + 6y'' + 9y = 0$ has characteristic polynomial $\lambda^4 + 6\lambda^2 + 9 = (\lambda^2 + 3)^2$, so has roots $\lambda = \pm \sqrt{3}i, \pm \sqrt{3}i$. Therefore the complementary functions are $y_c = c_1 \cos(\sqrt{3}x) + c_2x \cos(x) + c_3 \sin(\sqrt{3}x) + c_4x \sin(\sqrt{3}x)$. The trial solution is $x^s(A\cos(3x) + B\sin(3x))$, and s = 0 is sufficient to ensure that no term is a complementary function. So a trial solution is $y_p = A\cos(3x) + B\sin(3x)$.

III. A certain mass-spring system is modeled by the second-order equation x'' + cx' + 12x = 0, where c is the (2) damping constant. Find the value of c that gives critical damping (that is, the value of c for which the system neither overdamped nor underdamped).

The characteristic polynomial is $\lambda^2 + c\lambda + 12$, which has roots $\frac{-c \pm \sqrt{c^2 - 48}}{2}$. Critical damping occurs when there are two equal real roots, that is, when $c^2 = 48$ or $c = \sqrt{48}$ (which equals $4\sqrt{3}$, but this simplification is optional).

IV. Define what it means to say that a collection of functions $\{y_1, y_2, \ldots, y_n\}$ is *linearly independent*.

It means that $c_1y_1 + c_2y_2 + \cdots + c_ny_n = 0$ for constants c_i only when all the c_i are 0. or

It means that if $c_1y_1 + c_2y_2 + \cdots + c_ny_n = 0$ for constants c_i , then all the c_i are 0. or any of various other ways of stating this.