I. Define what it means to say that a collection of functions $\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$ is linearly independent.

It means that $c_{1} y_{1}+c_{2} y_{2}+\cdots+c_{n} y_{n}=0$ for constants c_{i} only when all the c_{i} are 0 . or
It means that if $c_{1} y_{1}+c_{2} y_{2}+\cdots+c_{n} y_{n}=0$ for constants c_{i}, then all the c_{i} are 0 . or any of various other ways of stating this.
II. Write trial solutions for using the method of undetermined coefficients to find a particular solution of (7) the following DE's, but do not carry out the calculations or proceed further with obtaining a particular solution.
(a) $y^{\prime \prime}+9 y=e^{3 x}$

The associated homogeneous DE $y^{\prime \prime}+9 y=0$ has characteristic polynomial $\lambda^{2}+9$ with roots $\lambda= \pm 3 i$, so the complementary functions are $y_{c}=c_{1} \cos (3 x)+c_{2} \sin (3 x)$. The trial solution is $x^{s}\left(A e^{3 x}\right)$, and $s=0$ is sufficient to ensure that no term is a complementary function. So a trial solution is $y_{p}=A e^{3 x}$.
(b) $y^{\prime \prime}-9 y=e^{3 x}$

The associated homogeneous DE $y^{\prime \prime}-9 y=0$ has characteristic polynomial $\lambda^{2}-9$ with roots $\lambda= \pm 3$, so the complementary functions are $y_{c}=c_{1} e^{3 x}+c_{2} e^{-3 x}$. The trial solution is $x^{s}\left(A e^{3 x}\right)$, and $s=1$ is sufficient to ensure that no term is a complementary function. So a trial solution is $y_{p}=A x e^{3 x}$.
(c) $y^{(4)}+6 y^{\prime \prime}+9 y=\cos (3 x)$

The associated homogeneous $\mathrm{DE} y^{(4)}+6 y^{\prime \prime}+9 y=0$ has characteristic polynomial $\lambda^{4}+6 \lambda^{2}+9=$ $\left(\lambda^{2}+3\right)^{2}$, so has roots $\lambda= \pm \sqrt{3} i, \pm \sqrt{3} i$. Therefore the complementary functions are $y_{c}=c_{1} \cos (\sqrt{3} x)+$ $c_{2} x \cos (x)+c_{3} \sin (\sqrt{3} x)+c_{4} x \sin (\sqrt{3} x)$. The trial solution is $x^{s}(A \cos (3 x)+B \sin (3 x))$, and $s=0$ is sufficient to ensure that no term is a complementary function. So a trial solution is $y_{p}=A \cos (3 x)+$ $B \sin (3 x)$.
III. A certain mass-spring system is modeled by the second-order equation $x^{\prime \prime}+c x^{\prime}+7 x=0$, where c is the
(2) damping constant. Find the value of c that gives critical damping (that is, the value of c for which the system neither overdamped nor underdamped).

The characteristic polynomial is $\lambda^{2}+c \lambda+7$, which has roots $\frac{-c \pm \sqrt{c^{2}-28}}{2}$. Critical damping occurs when there are two equal real roots, that is, when $c^{2}=28$ or $c=\sqrt{28}$ (which equals $2 \sqrt{7}$, but this simplification is optional).
IV. Suppose that the function $-8 \cos (x)-3 \sin (x)$ is rewritten in phase-angle form $C \cos (\omega t-\alpha)$ (do not try to
(3) carry this out, just suppose that someone did). Give the phase angle α as an expression that involves a value of the inverse tangent function (that is, as an expression containing a number of the form tan ${ }^{-1}$ (something), not a decimal number. You do not need to evaluate it on a calculator.)

We have $(A, B)=(-8,-3)$, which lies in the third quadrant. Since the angle $\tan ^{-1}(B / A)=$ $\tan ^{-1}(3 / 8)$ lies in the first quadrant, α is $\pi+\tan ^{-1}(3 / 8)$.

