April 8, 2011
Instructions: Give concise answers, but clearly indicate your reasoning.
I. Define what it means to say that a collection of vectors $\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$ is linearly independent.
II.
(5) $\quad$ Let $A=\left[\begin{array}{ccc}3 t & -1 & 0 \\ 2 & 1 & -t \\ 1 & 5 & 0\end{array}\right], B=\left[\begin{array}{ccc}3 & -1 & 0 \\ 2-t & 1 & 1\end{array}\right]$, and $C=\left[\begin{array}{ccc}-\cos (t) & 3 & 0\end{array}\right]$.
(a) Tell which of the following six products are defined (do not do any calculations, just tell which ones are defined): $A B, B A, A C, C A, B C, C B$.
(b) Calculate $\operatorname{det}(A)$.
III. Write the second-order system $x^{\prime \prime}-5 x+3 y=0, y^{\prime \prime}+2 x+y=0$ as an equivalent system of first-order (3) equations.
IV. Write the system $x_{1}^{\prime}=8 x_{1}+t x_{2}+\cos (t), x_{2}^{\prime}=x_{2}-x_{3}, x_{3}^{\prime}=t+2 t x_{2}-x_{3}$ in matrix form $X^{\prime}=P X+F$.
(3) Do not proceed further with solving the system, just rewrite the general form $X^{\prime}=P X+F$ with $X, P$ and $F$ written as matrices with the correct dimensions and entries for this particular system.
V. For the system $X^{\prime}=\left[\begin{array}{ccc}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right] X$, verify that $X=e^{-t}\left[\begin{array}{c}0 \\ 1 \\ -1\end{array}\right]$ is a solution.
VI. Bonus problem: Graph the hyperbola $x^{2}-\frac{y^{2}}{2}=1$, showing the numerical values of the intercepts and the equations of the asymptotes.

