Instructions: Give concise answers, but clearly indicate your reasoning.
I. Define what it means to say that a collection of vectors $\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$ is linearly independent.

It means that $c_{1} X_{1}+c_{2} X_{2}+\cdots+c_{n} X_{n}=0$ for constants c_{i} only when all the c_{i} are 0 . [or]
It means that if $c_{1} X_{1}+c_{2} X_{2}+\cdots+c_{n} X_{n}=0$ for constants c_{i}, then all the c_{i} are 0 .
II.
(5) \quad Let $A=\left[\begin{array}{ccc}3 t & -1 & 0 \\ 2 & 1 & -t \\ 1 & 5 & 0\end{array}\right], B=\left[\begin{array}{ccc}3 & -1 & 0 \\ 2-t & 1 & 1\end{array}\right]$, and $C=\left[\begin{array}{lll}-\cos (t) & 3 & 0\end{array}\right]$.
(a) Tell which of the following six products are defined (do not do any calculations, just tell which ones are defined): $A B, B A, A C, C A, B C, C B$.
$B A$ and $C A$ are defined, $A B, A C, B C$, and $C B$ are not defined.
(b) Calculate $\operatorname{det}(A)$.

The easiest way is to expand down the third column of A, since that column contains two zeros. We find that

$$
\operatorname{det}(A)=0-(-t) \cdot(3 t \cdot 5-(-1) \cdot 1)+0=15 t^{2}+t
$$

III. Write the second-order system $x^{\prime \prime}-5 x+3 y=0, y^{\prime \prime}+2 x+y=0$ as an equivalent system of first-order equations.

We define new functions x_{1}, x_{2}, y_{1}, and y_{2} by $x_{1}=x, x_{2}=x^{\prime}, y_{1}=y$, and $y_{2}=y^{\prime}$. With these definitions, the second-order system becomes

$$
\begin{aligned}
x_{1}^{\prime} & =x_{2} \\
x_{2}^{\prime} & =5 x_{1}-3 y_{1} \\
y_{1}^{\prime} & =y_{2} \\
y_{2}^{\prime} & =-2 x_{1}-y_{1}
\end{aligned}
$$

IV. Write the system $x_{1}^{\prime}=8 x_{1}+t x_{2}+\cos (t), x_{2}^{\prime}=x_{2}-x_{3}, x_{3}^{\prime}=t+2 t x_{2}-x_{3}$ in matrix form $X^{\prime}=P X+F$. (3) Do not proceed further with solving the system, just rewrite the general form $X^{\prime}=P X+F$ with X, P and F written as matrices with the correct dimensions and entries for this particular system.

$$
\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]^{\prime}=\left[\begin{array}{ccc}
8 & t & 0 \\
0 & 1 & -1 \\
0 & 2 t & -1
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]+\left[\begin{array}{c}
\cos (t) \\
0 \\
t
\end{array}\right]
$$

V. For the system $X^{\prime}=\left[\begin{array}{ccc}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right] X$, verify that $X=e^{-t}\left[\begin{array}{c}0 \\ 1 \\ -1\end{array}\right]$ is a solution.

We have $X^{\prime}=-e^{-t}\left[\begin{array}{c}0 \\ 1 \\ -1\end{array}\right]$, and we compute that

$$
\left[\begin{array}{ccc}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right] \cdot e^{-t}\left[\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right]=e^{-t}\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right] \cdot\left[\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right]=e^{-t}\left[\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right]=-e^{-t}\left[\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right]=X^{\prime}
$$

VI. Bonus problem: Graph the hyperbola $x^{2}-\frac{y^{2}}{2}=1$, showing the numerical values of the intercepts and the equations of the asymptotes.

