Mathematics 3113-005

Quiz 7 Form A

April 15, 2011

Instructions: Give concise answers, but clearly indicate your reasoning.

I. The system of linear equations

(3)

 $c_1 + c_2 = 10$ $c_1 - c_2 - c_3 = -1$ $c_1 + c_3 = 12$

arises in solving one of the homework problems (5.1#26). Use the method of Gauss-Jordan elimination to solve this system. That is, rewrite the system as an "augmented" matrix, then do elementary row operations to obtain the values of c_1 , c_2 , and c_3 that satisfy the system. The first step, writing the augmented matrix, has already been carried out below, just continue the process from there.

$$\begin{bmatrix} 1 & 1 & 0 & | & 10 \\ 1 & -1 & -1 & | & -1 \\ 1 & 0 & 1 & | & 12 \end{bmatrix} \longrightarrow$$

II. For the system $X' = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix} X$, a general solution is (3)

$\begin{bmatrix} x_1\\ x_2\\ x_3 \end{bmatrix} = c_1 e^{-t} \begin{bmatrix} \\ \end{bmatrix}$	$\begin{bmatrix} 1\\0\\-1 \end{bmatrix} + c_2 e^{-t}$	$\begin{bmatrix} 0\\1\\-1\end{bmatrix} + c_3 e^{2t}$	$\begin{bmatrix} 1\\1\\1\end{bmatrix}$
---	---	--	--

(do not derive this or check this). Write a system of linear equations whose solution (c_1, c_2, c_3) gives x_1 , x_2 , and x_3 satisfying $x_1(1) = 0$, $x_2(1) = -1$, $x_3(1) = 7$. Do not solve this system, just write it down.

III. Define an *eigenvalue* of a matrix A, and define an *eigenvector* associated to that eigenvalue. You may use(3) the version of the definitions given in class, or the version given in the book, or any equivalent statement.

- **IV**. (a) Show how to calculate that the eigenvalues of the matrix $P = \begin{bmatrix} 3 & 4 \\ 3 & 2 \end{bmatrix}$ are -1 and 6. (7)
 - (b) An eigenvector associated to the eigenvalue -1 is $\begin{bmatrix} -1\\ 1 \end{bmatrix}$ (do not calculate this or check it). Use this to write out a solution X_1 of the system X' = PX.
 - (c) For the eigenvalue 6, find an associated eigenvector $\begin{bmatrix} a \\ b \end{bmatrix}$.