Not necessarily algebraic topology

Darryl McCullough

University of Oklahoma

April 1, 2000

Theorem 1 S^1 is not contractible (i. e. there is no homotopy from the identity map of S^1 to the constant map).

Equivalently, there is no map from D^2 to S^1 which is the identity on S^1 (this version is called the *No Retraction Theorem*).

"Easy" algebraic topology proof: If there were a retraction, then by passing to the fundamental groups we would obtain a contradiction.

But there is actually a fairly easy topological proof (that almost certainly goes back to Eilenberg).

It appears in:

Robert F. Brown, Elementary consequences of the noncontractibility of the circle, *American Mathematical Monthly* 81 (1974), 247-252.

and it is also between the lines in

James Dugundji, *Topology*, Allyn and Bacon, 1966.

Lemma 2 If $f: S^1 \to S^1$ is homotopic to a constant map, then there is a lift $\phi: S^1 \to \mathbb{R}$ of f.

Step 1: Show that if $g: S^1 \to S^1$ lifts, and $h: S^1 \to S^1$ satisfies $h(x) \neq -g(x)$ for all $x \in S^1$, then h also lifts.

 $\frac{h(x)}{g(x)} \in S^1$, and since $\frac{h(x)}{g(x)}$ is never -1, we can write $\frac{h(x)}{g(x)}$ as $e^{i\psi(x)}$ where $\psi(x) \in (-\pi, \pi)$.

If γ is a lift of g, i. e. $g(x) = e^{i\gamma(x)}$, then $\gamma + \psi$ is a lift of h. For we have

$$e^{i(\gamma(x)+\psi(x))} = e^{i\gamma(x)} e^{i\psi(x)} = g(x) \frac{h(x)}{g(x)} = h(x)$$

5

Step 2: Complete the proof.

We are assuming that f is homotopic to c_1 , and want to show that f lifts to \mathbb{R} .

Since *H* is uniformly continuous, there exists $\delta > 0$ so that if $||x - y|| < \delta$, then ||H(x) - H(y)|| < 2. Choose points t_i in *I* with $t_{i+1} - t_i < \delta$, then using step 1,

$$c_1 = H|_{S^1 \times \{0\}}$$
 lifts,
 $H|_{S^1 \times \{t_1\}}$ lifts,
 $H|_{S^1 \times \{t_2\}}$ lifts,
 $H|_{S^1 \times \{t_3\}}$ lifts,
 \vdots
 $H|_{S^1 \times \{t_{n-1}\}}$ lifts,
 $f = H|_{S^1 \times \{1\}}$ lifts.

Remarks

1. The converse (that if f lifts, then it is homotopic to a constant) is easy, since \mathbb{R} is contractible.

2. The Lemma is true for $f: X^{\text{compact metric}} \rightarrow S^1$, by the same proof.

Proof that S^1 is not contractible:

Suppose that id_{S^1} were homotopic to a constant map. By the lemma, it would lift to \mathbb{R} .

The lift ϕ must be injective, since $e^{i\phi(x)}$ is injective. This violates the Intermediate Value Theorem.

(Choose α between $\phi(-1)$ and $\phi(1)$. Both arcs in S^1 from -1 to 1 must contain a point that maps to α .) Standard consequences of the noncontractibility of ${\cal S}^1$

- 1. The No Retraction Theorem
- 2. The Brouwer Fixed Point Theorem
- 3. The Fundamental Theorem of Algebra

Less standard consequences

4. These circles are linked (which implies that the Hopf map from S^3 to S^2 is not homotopic to a constant map, so $\pi_3(S^2) \neq 0$):

5. The complex projectivizing map

does not admit a cross-section.

6. The Jordan Curve Theorem

"An elementary proof can be found in Dugundji, p. 362."

