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“There are many roads to
Nirvanah.”

Yours may be different from
mine.



f' can be defined in many ways.

My least favorite definition is

h—0 h

Although this happens to be an algebraically
convenient way to verify some of the basic for-
mulas, I find it to be one of the least useful
ways to think about the derivative.

The underlying idea of f’ is linear approxima-
tion, so I try to focus on this idea, rather than
tacking it on as an afterthought.

To introduce the derivative, I like to use a two-
step approach. I make no claim to originality,
on the contrary I believe that this approach is
“retro.”



Step 1: Calculate a nontrivial derivative

This can be done, and the geometric mean-
ing of the derivative can be explored, before
introducing limits:
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Consider all the lines through (zo, z3).

The line of slope m has equation y — x% = m(x — x0),
so its intersections with the graph of y = 22 are exactly
the solutions of:

z? — x5 = m(x — x0)

z® — mx + (mxo —x3) =0 .
The discriminant of this quadratic is
m? — 4maxo + 4x5 = (m — 2x0)? ,

so there are two distinct intersection points except when
the slope satisfies m = 2x0.



By the way, this generalizes easily to compute
the derivative of ™ without use of limits:

The intersections of the line of slope m through
(zo,z3) and the graph of y = z™ are the solu-
tions of

" — x5 = m(x — xq)

(@ —20)(@" L + 2" 2w+ -+ 2l L —m) =0

Consider what happens when you vary m.

When the line becomes tangent, two roots co-
alesce into one, so xg appears twice as a root
of the polynomial. So xg gives 0 in the factor

"1 4 :L‘n_zazo + ...+ 335138_2 + 338_1 —m

which says exactly that m = n:zzg’_l.



Step 2: After the basic idea of limits becomes
available, define f’(a) using the best linear ap-
proximation.
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Define f'(a) to be the choice of m (if one exists) such
that E(h) defined by

fla+h) = f(a) +mh+ E(h)

satisfies

This puts the focus on linear approximation, in particu-
lar on the error of linear approximation, rather than on
limits.

And this is the definition that generalizes trivially to
functions from R™ to R".



Another advantage is that the definition

fla+h) = f(a) + f'(a)h + E(h)

contains the basic idea of Taylor's formula.

When you get to the Mean Value Theorem,
and want to show a use for it other than the
contrived examples given in the book, you can
apply it twice to give an upper bound for the
error E(h):

E(h) = f(a+h) — f(a) — f'(a)h
= f'(e)h — f'(a)h = f"(c1) (c—a) h

SO
E(h)| < Mh?

where M is the maximum of |f”(z)| between a
and a + h.



And as soon as you get to integration by parts,
you can use it to give a precise formula for the
error. Calculate that

/Oh(h — D" (a 4 t)dt

h h
= (h—t)f’(a+t)|o + [ f'a+ 0yt
— —f(a)h+ fla+h) — f(a) = E(h)

so if m and M are the minimum and maximum
values of f’(z) between a and a + h, we have

h h
/O(h—t)mdth(h)gfo (h—t) M dt
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and the Intermediate Value Theorem tells us
that

2
B(h) = §"(e)

for some ¢ between a and a + h.



I try to be conscious of the need to convey
the underlying geometric reason why some-
thing works, rather than give formal, algebraic
arguments that indulge my personal need for
“proof.”

Here are some other examples of this teaching
philosophy.
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which also shows that |Iim 0.
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Why is d%(sin(@)) = cos(0)7

(cos(a+h), sin(a+h))

(cos(a), sin(a)
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If you do want to prove algebraically that d% sin(f) =
cos(0), write

sin(a + h) = sin(a) + cos(a)h
+(cos(h) — 1)sin(a) + (sin(h) — h) cos(a)

and observe that

im cos(h) — 1 sin(h)
h—0

sin(a)—l—( —1) cos(a) = 0.
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Why is the Fundamental Theorem of
Calculus true?

y =1(X)

f(x)
A(X)

As one changes z, the rate at which A(x) is increasing
is proportional to f(x).

That is, A'(x) = kf(x) for some constant k.

Checking one example (such as y = 2z, for which A(z) =
z? by the formula for the area of a triangle) shows that
k=1.
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Why is the Fundamental Theorem of
Calculus true?

m f'(c) h

f(a)

a a+h

From this diagram, A(a + h) = A(a) + f(a)h + E(h),
where E(h) is approximately the area of a triangle whose
area is %f’(c)h2 for some ¢ between a and a + h.

E(h 51 (c)h?
Since lim E(h) = lim &
h—0 h h—0 h

we have A'(a) = f(a).

1
= Ef'(a) limh =0,

(Here, I have used the theorem from elementary calculus
that all functions have continuous derivatives.)
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Why is the product rule true?

a+h
a “h’
f
f(at+h)
f(a) f@ah
g@h
f(a)
f(a)g(a) 9(a)

f(a) h

fla+h)g(a+h) = f(a)g(a) + f(a)g (a)h + g(a)f (a)h + E(h)

14



Why is the chain rule true?

9(a) “g(ah

f(g@)) "t (9(a) 4 (a)
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