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One of the first things we learn about matrices
in linear algebra is that AB need not equal BA.

For example,

o o/lo o/=1]o o

FIRA

So we can even have AB #= 0 but BA = 0!

but

How different can AB and BA be? Can we
even write any two n X n matrices X and Y as
X =AB and Y = BA~?



No, AB and BA cannot be just any two matri-
ces. They must have the same determinant,
where for 2 x 2 matrices the determinant is

defined by

a b

det [C 7

]zad—bc.

The determinant function has the remarkable
property that det(AB) = det(A) det(B).

So we have
det(AB) = det(A) det(B)
= det(B) det(A)
— det(BA)

Are there other functions f for which
f(AB) = f(BA)?



There is another function that satisfies
f(AB) = f(BA)— the trace function, which is
just the sum of the diagonal entries:

n
tr(A) = tr([a;;]) = ) ay
i=1
Unlike the determinant function, one does not
usually have tr(AB) = tr(A) tr(B).

But one always has tr(AB) = tr(BA):

1=1



Are there are any other functions that satisfy
f(AB) = f(BA)?

Of course we can generate lots of silly exam-
ples using the trace and determinant, such as

f(AB) = cos(23 det(AB)) — 7tr(AB) .

In fact, just taking polynomial expressions in
trace and determinant, we can get many poly-
nomials in the matrix entries that have this
property, e. g.

6tr’(A) det(A) = 6(a + d)?(ad — be) .

What we are actually wondering is:

Are there polynomials p in the matrix entries
such that p(AB) = p(BA), other than polyno-
mial expressions in the trace and determinant
themselves?



The answer is yes. There is a source that gives
both the trace and determinant, and others as
well— the characteristic polynomial:

char(A) = det(\I, — A)

It is a polynomial in A, with coefficients that
are are polynomials in the entries of A.

For example, for a 3 x 3 matrix we have

a1l ai12 ais
char as1 ao22 an3

a3l a32 aszs3|

A—aj1  —aip  —a13
= det —an1 A — ano —an3
| —a31  —a3zx A —as3

= A> — (a11 + a2o + a33)\?
+<a11a22 —a12a21 +a11a33

—a13031 + a22a33 — a23a32)>\
—(a11a22a33 — a11a23a32 + 412023031
—a12a21433 + 4134210432 — a12a22a31)

= A3 —tr(A) A2 + po(A) X — det(A)



In general, for an n x n matrix we have

char(A) = A" — tr(A)A" ™ 4 po(A)A" 2
44 (=) 1p, 1 (ADXN+ (—1)"det(A)

for certain polynomials p; in the entries of A.

We should actually write p, ; for these
polynomials, since their formulas depend on
the size n of the matrix. And we can write
pml(A) = tr(A) and pnn(A) = det(A).

So we wonder whether char(AB) = char(BA).
That would be the same as saying that
Pni(AB) = p, ;(BA) for each of these

polynomials.



The answer is yes:

Theorem: If A and B are n Xxn matrices, then
char(AB) = char(BA).

A beautiful proof of this was given in:

J. Schmid, A remark on characteristic polyno-
mials, Am. Math. Monthly, 77 (1970), 998-
999.

In fact, he proved a stronger result, that be-
comes the theorem above if we have m = n:

Theorem: Let A be an n X m matrix and B
an m X n matrix. Then

A" char(AB) = A" char(BA)



Theorem: Let A be an n x m matrix and B
an m X n matrix. Then

A" char(AB) = A" char(BA)

proof (J. Schmid): Put

e~ =[5 2

B I, —B Al
Then we have
| AMlp—AB MA PV A
CD_[ 0 AIm]’DC_[O AIm—BA]
So

A" char(AB) = det(\I,,) det(\I, — AB)
= det(CD)
= det(DC)
= det(\l,) det(Al,, — BA)
= \'char(BA)



So, have we now found all the f's with f(AB) =
f(BA)7

Yesl!

Every polynomial p in the matrix entries that
satisfies p(AB) = p(BA) can be written as a
polynomial in the p, ;.

Consider first the case of diagonal matrices, where the
entries are the eigenvalues. Any p with p(AB) = p(BA)
IS a similarity invariant, so gives the same values if we
permute the diagonal entries. Therefore it is a symmet-
ric polynomial in the eigenvalues. The polynomials 1,
DPn,1: Pn2,--., Pnn are the elementary symmetric polyno-
mials in the eigenvalues, so any symmetric polynomial
in the eigenvalues can be written (uniquely) as a poly-
nomial in them, say p = P(1,pn1,...,Pnn), ON diagonal
matrices. Since p is invariant under similarity, it equals
P on all the set of all conjugates of diagonal matrices
with distinct nonzero eigenvalues, which form an open
subset of M,(R) = R™. Since p and P are polynomials,
this implies that p = P on all of M,(R).
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A final question: If p, ,(X) = p,;(Y) for all
the polynomials, does this ensure that we can
write X = AB and Y = BA for some A and B?

No, there are easy examples that show this is
not enough, such as

1 O 1 1
== (1 %) o= (1 1)

X and Y have the same trace and determi-
nant (i. e. po1(X) = p21(Y) and pro(X) =
p22(Y)), but if AB =1 then A and B are in-
verses, and BA = I as well.

There are many such examples for larger n.
The condition that p, ;(X) = p,;(Y) for all
1 IS equivalent to X and Y having the same
eigenvalues, which is much weaker than being
able to write X = AB and Y = BA (which
IS equivalent to similarity when X and Y are
nonsingular).
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