Name: Solution

Student Number:

Problem 1

Find the dimensions of a rectangle with perimeter 100 m whose area is as large as possible.

Let l'be the length of the rectargle

and whe its width.

Let P be the perimeter and A be the

area.

 $P = 100m = 2l + 2\omega \rightarrow \omega = \frac{100 - 2l}{2}$ $A = l \cdot \omega$ $[\omega = 50 - l]$

A = e. w

A = P w = P (50-P) = 508 - P2

A' = 50 - 2l

critical numbers:

A' =0

2 = 25

To check whether we have min or more at l= 25, we are going to use the 2nd derivative test:

A" = -2 60

So we have a maximum at l=25

Here, l=25 & w=50-l=50-25=25

So we have a square of side 25.